基于卷积神经网络的直流交联聚乙烯电缆局部放电模式识别

Yufeng Zhu, Yongpeng Xu, Jingde Chen, Fan Rusen, Sheng Gehao, Xiuchen Jiang
{"title":"基于卷积神经网络的直流交联聚乙烯电缆局部放电模式识别","authors":"Yufeng Zhu, Yongpeng Xu, Jingde Chen, Fan Rusen, Sheng Gehao, Xiuchen Jiang","doi":"10.1109/CMD.2018.8535793","DOIUrl":null,"url":null,"abstract":"In order to deal with the limitations on the feature extraction of strong random signals in DC XLPE cables, this paper proposes a self-adaptive pattern recognition method based on convolutional neural network (CNN). Convolutional Architecture for Fast Feature Embedding (Caffe) has great performance on image recognition using CNN. Four typical insulation defects are designed and PD signals are collected for pattern recognition. Four different Caffe frameworks are constructed to analyze the impact of the network structures and solver parameters on training effect. Compared with Quick-CIFAR-IO and original Alexnet network, the modified Alexnet network proposed by this paper has great adaptability to pattern recognition of partial discharges in DC XLPE cables.","PeriodicalId":6529,"journal":{"name":"2018 Condition Monitoring and Diagnosis (CMD)","volume":"23 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Partial discharge pattern recognition of DC XLPE cables based on convolutional neural network\",\"authors\":\"Yufeng Zhu, Yongpeng Xu, Jingde Chen, Fan Rusen, Sheng Gehao, Xiuchen Jiang\",\"doi\":\"10.1109/CMD.2018.8535793\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to deal with the limitations on the feature extraction of strong random signals in DC XLPE cables, this paper proposes a self-adaptive pattern recognition method based on convolutional neural network (CNN). Convolutional Architecture for Fast Feature Embedding (Caffe) has great performance on image recognition using CNN. Four typical insulation defects are designed and PD signals are collected for pattern recognition. Four different Caffe frameworks are constructed to analyze the impact of the network structures and solver parameters on training effect. Compared with Quick-CIFAR-IO and original Alexnet network, the modified Alexnet network proposed by this paper has great adaptability to pattern recognition of partial discharges in DC XLPE cables.\",\"PeriodicalId\":6529,\"journal\":{\"name\":\"2018 Condition Monitoring and Diagnosis (CMD)\",\"volume\":\"23 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 Condition Monitoring and Diagnosis (CMD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CMD.2018.8535793\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Condition Monitoring and Diagnosis (CMD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CMD.2018.8535793","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

针对直流XLPE电缆中强随机信号特征提取的局限性,提出了一种基于卷积神经网络(CNN)的自适应模式识别方法。卷积快速特征嵌入体系结构(Caffe)在CNN图像识别中有很好的表现。设计了四种典型的绝缘缺陷,并采集了PD信号进行模式识别。构建了四种不同的Caffe框架,分析了网络结构和求解器参数对训练效果的影响。与Quick-CIFAR-IO和原有的Alexnet网络相比,本文提出的改进Alexnet网络对直流交联聚乙烯电缆局部放电的模式识别具有很强的适应性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Partial discharge pattern recognition of DC XLPE cables based on convolutional neural network
In order to deal with the limitations on the feature extraction of strong random signals in DC XLPE cables, this paper proposes a self-adaptive pattern recognition method based on convolutional neural network (CNN). Convolutional Architecture for Fast Feature Embedding (Caffe) has great performance on image recognition using CNN. Four typical insulation defects are designed and PD signals are collected for pattern recognition. Four different Caffe frameworks are constructed to analyze the impact of the network structures and solver parameters on training effect. Compared with Quick-CIFAR-IO and original Alexnet network, the modified Alexnet network proposed by this paper has great adaptability to pattern recognition of partial discharges in DC XLPE cables.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信