周期强迫可逆向量场中的混沌

IF 0.4 Q4 MATHEMATICS
I. Labouriau, Elisa Sovrano
{"title":"周期强迫可逆向量场中的混沌","authors":"I. Labouriau, Elisa Sovrano","doi":"10.5427/jsing.2020.22p","DOIUrl":null,"url":null,"abstract":"We discuss the appearance of chaos in time-periodic perturbations of reversible vector fields in the plane. We use the normal forms of codimension~$1$ reversible vector fields and discuss the ways a time-dependent periodic forcing term of pulse form may be added to them to yield topological chaotic behaviour. Chaos here means that the resulting dynamics is semi-conjugate to a shift in a finite alphabet. \nThe results rely on the classification of reversible vector fields and on the theory of topological horseshoes. This work is part of a project of studying periodic forcing of symmetric vector fields.","PeriodicalId":44411,"journal":{"name":"Journal of Singularities","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2019-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Chaos in periodically forced reversible vector fields\",\"authors\":\"I. Labouriau, Elisa Sovrano\",\"doi\":\"10.5427/jsing.2020.22p\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We discuss the appearance of chaos in time-periodic perturbations of reversible vector fields in the plane. We use the normal forms of codimension~$1$ reversible vector fields and discuss the ways a time-dependent periodic forcing term of pulse form may be added to them to yield topological chaotic behaviour. Chaos here means that the resulting dynamics is semi-conjugate to a shift in a finite alphabet. \\nThe results rely on the classification of reversible vector fields and on the theory of topological horseshoes. This work is part of a project of studying periodic forcing of symmetric vector fields.\",\"PeriodicalId\":44411,\"journal\":{\"name\":\"Journal of Singularities\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2019-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Singularities\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5427/jsing.2020.22p\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Singularities","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5427/jsing.2020.22p","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

讨论了平面上可逆矢量场的时间周期扰动中混沌的出现。利用余维可逆向量场的正规形式,讨论了在可逆向量场上加入脉冲形式的时相关周期强迫项以产生拓扑混沌行为的方法。这里的混沌意味着所得到的动力学与有限字母表中的位移是半共轭的。结果依赖于可逆向量场的分类和拓扑马蹄铁理论。这项工作是研究对称矢量场周期性强迫的一个项目的一部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Chaos in periodically forced reversible vector fields
We discuss the appearance of chaos in time-periodic perturbations of reversible vector fields in the plane. We use the normal forms of codimension~$1$ reversible vector fields and discuss the ways a time-dependent periodic forcing term of pulse form may be added to them to yield topological chaotic behaviour. Chaos here means that the resulting dynamics is semi-conjugate to a shift in a finite alphabet. The results rely on the classification of reversible vector fields and on the theory of topological horseshoes. This work is part of a project of studying periodic forcing of symmetric vector fields.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
28
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信