{"title":"优化以太网络以支持最佳流量","authors":"D. Tamas-Selicean, P. Pop","doi":"10.1109/ETFA.2014.7005256","DOIUrl":null,"url":null,"abstract":"This paper focuses on the optimization of the TTEthernet communication protocol, which offers three traffic classes: time-triggered (TT), sent according to static schedules, rate-constrained (RC) that has bounded end-to-end latency, and best-effort (BE), the classic Ethernet traffic, with no timing guarantees. In our earlier work we have proposed an optimization approach named DOTTS that performs the routing, scheduling and packing / fragmenting of TT and RC messages, such that the TT and RC traffic is schedulable. Although backwards compatibility with classic Ethernet networks is one of TTEthernet's strong points, there is little research on this topic. However, in this paper, we extend our DOTTS optimization approach to optimize TTEthernet networks, such that not only the TT and RC messages are schedulable, but we also maximize the available bandwidth for BE messages. The proposed optimization has been evaluated on a space application case study.","PeriodicalId":20477,"journal":{"name":"Proceedings of the 2014 IEEE Emerging Technology and Factory Automation (ETFA)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Optimization of TTEthernet networks to support best-effort traffic\",\"authors\":\"D. Tamas-Selicean, P. Pop\",\"doi\":\"10.1109/ETFA.2014.7005256\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper focuses on the optimization of the TTEthernet communication protocol, which offers three traffic classes: time-triggered (TT), sent according to static schedules, rate-constrained (RC) that has bounded end-to-end latency, and best-effort (BE), the classic Ethernet traffic, with no timing guarantees. In our earlier work we have proposed an optimization approach named DOTTS that performs the routing, scheduling and packing / fragmenting of TT and RC messages, such that the TT and RC traffic is schedulable. Although backwards compatibility with classic Ethernet networks is one of TTEthernet's strong points, there is little research on this topic. However, in this paper, we extend our DOTTS optimization approach to optimize TTEthernet networks, such that not only the TT and RC messages are schedulable, but we also maximize the available bandwidth for BE messages. The proposed optimization has been evaluated on a space application case study.\",\"PeriodicalId\":20477,\"journal\":{\"name\":\"Proceedings of the 2014 IEEE Emerging Technology and Factory Automation (ETFA)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2014 IEEE Emerging Technology and Factory Automation (ETFA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ETFA.2014.7005256\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2014 IEEE Emerging Technology and Factory Automation (ETFA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ETFA.2014.7005256","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Optimization of TTEthernet networks to support best-effort traffic
This paper focuses on the optimization of the TTEthernet communication protocol, which offers three traffic classes: time-triggered (TT), sent according to static schedules, rate-constrained (RC) that has bounded end-to-end latency, and best-effort (BE), the classic Ethernet traffic, with no timing guarantees. In our earlier work we have proposed an optimization approach named DOTTS that performs the routing, scheduling and packing / fragmenting of TT and RC messages, such that the TT and RC traffic is schedulable. Although backwards compatibility with classic Ethernet networks is one of TTEthernet's strong points, there is little research on this topic. However, in this paper, we extend our DOTTS optimization approach to optimize TTEthernet networks, such that not only the TT and RC messages are schedulable, but we also maximize the available bandwidth for BE messages. The proposed optimization has been evaluated on a space application case study.