介绍用于用户建模和推荐的图形技术特别部分,第2部分

Xiangnan He, Z. Ren, Emine Yilmaz, Marc Najork, Tat-seng Chua
{"title":"介绍用于用户建模和推荐的图形技术特别部分,第2部分","authors":"Xiangnan He, Z. Ren, Emine Yilmaz, Marc Najork, Tat-seng Chua","doi":"10.1145/3490180","DOIUrl":null,"url":null,"abstract":"As a powerful data structure that represents the relationships among data objects, graph-structure data is ubiquitous in real-world applications. Learning on graph-structure data has become a hot spot in machine learning and data mining. Since most data in user-oriented services can be naturally organized as graphs, graph technologies have attracted increasing attention from IR community and achieved immense success, especially in two major research topics—user modeling and recommendation. In the recent decade, the IR and related communities have witnessed a number of major contributions to the field of graph learning. They include but not limited to collaborative filtering (e.g., He et al. [2020], Wang et al. [2019b], Wu et al. [2021], and Ying et al. [2018]), knowledge-aware recommendation (e.g., Cao et al. [2019] andWang et al. [2018, 2019a]), user profiling and demographic inference (e.g., Chen et al. [2019] and Rahimi et al. [2018]), social and sequential recommendation (e.g., Wang et al. [2020b] and Wu et al. [2019a, b]), bias and fairness (e.g., Rahman et al. [2019], Zhang et al. [2021a], and Zheng et al. [2021]). The growing body of work in this area has been supplemented by an increasing number of recent workshops (e.g., Cui et al. [2021], Ding et al. [2020], Jannach et al. [2020], and Yin et al. [2021]) and tutorials (e.g., Chen et al. [2020], Mehrotra et al. [2020], Tang and Dong [2019], Wang et al. [2020a], and Xu et al. [2018]). Despite such great","PeriodicalId":6934,"journal":{"name":"ACM Transactions on Information Systems (TOIS)","volume":"266 1","pages":"1 - 5"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Introduction to the Special Section on Graph Technologies for User Modeling and Recommendation, Part 2\",\"authors\":\"Xiangnan He, Z. Ren, Emine Yilmaz, Marc Najork, Tat-seng Chua\",\"doi\":\"10.1145/3490180\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As a powerful data structure that represents the relationships among data objects, graph-structure data is ubiquitous in real-world applications. Learning on graph-structure data has become a hot spot in machine learning and data mining. Since most data in user-oriented services can be naturally organized as graphs, graph technologies have attracted increasing attention from IR community and achieved immense success, especially in two major research topics—user modeling and recommendation. In the recent decade, the IR and related communities have witnessed a number of major contributions to the field of graph learning. They include but not limited to collaborative filtering (e.g., He et al. [2020], Wang et al. [2019b], Wu et al. [2021], and Ying et al. [2018]), knowledge-aware recommendation (e.g., Cao et al. [2019] andWang et al. [2018, 2019a]), user profiling and demographic inference (e.g., Chen et al. [2019] and Rahimi et al. [2018]), social and sequential recommendation (e.g., Wang et al. [2020b] and Wu et al. [2019a, b]), bias and fairness (e.g., Rahman et al. [2019], Zhang et al. [2021a], and Zheng et al. [2021]). The growing body of work in this area has been supplemented by an increasing number of recent workshops (e.g., Cui et al. [2021], Ding et al. [2020], Jannach et al. [2020], and Yin et al. [2021]) and tutorials (e.g., Chen et al. [2020], Mehrotra et al. [2020], Tang and Dong [2019], Wang et al. [2020a], and Xu et al. [2018]). Despite such great\",\"PeriodicalId\":6934,\"journal\":{\"name\":\"ACM Transactions on Information Systems (TOIS)\",\"volume\":\"266 1\",\"pages\":\"1 - 5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Information Systems (TOIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3490180\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Information Systems (TOIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3490180","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

作为表示数据对象之间关系的强大数据结构,图结构数据在实际应用程序中无处不在。图结构数据的学习已成为机器学习和数据挖掘领域的研究热点。由于面向用户的服务中的大多数数据都可以自然地组织成图形,因此图形技术越来越受到IR社区的关注,并取得了巨大的成功,特别是在用户建模和推荐这两个主要研究课题上。在最近的十年中,IR和相关社区见证了对图学习领域的许多重大贡献。包括但不限于协同过滤(例如,他et al。[2020],王et al。(2019 b),吴et al。[2021],并应et al . [2018]), knowledge-aware建议(例如,曹et al。[2019]andWang et al .(2018, 2019)),用户分析和统计推断(例如,Chen等人[2019]和拉希米et al .[2018]),社会和顺序推荐王(例如,et al。(2020 b)和吴et al . (2019 a, b)),偏见和公平(例如,拉赫曼et al。[2019],Zhang et al。(2021),郑等[2021])。最近越来越多的研讨会(例如,Cui等人[2021]、Ding等人[2020]、Jannach等人[2020]和Yin等人[2021])和教程(例如,Chen等人[2020]、Mehrotra等人[2020]、Tang和Dong[2019]、Wang等人[2020a]和Xu等人[2018])补充了这一领域不断增长的工作。尽管如此伟大
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Introduction to the Special Section on Graph Technologies for User Modeling and Recommendation, Part 2
As a powerful data structure that represents the relationships among data objects, graph-structure data is ubiquitous in real-world applications. Learning on graph-structure data has become a hot spot in machine learning and data mining. Since most data in user-oriented services can be naturally organized as graphs, graph technologies have attracted increasing attention from IR community and achieved immense success, especially in two major research topics—user modeling and recommendation. In the recent decade, the IR and related communities have witnessed a number of major contributions to the field of graph learning. They include but not limited to collaborative filtering (e.g., He et al. [2020], Wang et al. [2019b], Wu et al. [2021], and Ying et al. [2018]), knowledge-aware recommendation (e.g., Cao et al. [2019] andWang et al. [2018, 2019a]), user profiling and demographic inference (e.g., Chen et al. [2019] and Rahimi et al. [2018]), social and sequential recommendation (e.g., Wang et al. [2020b] and Wu et al. [2019a, b]), bias and fairness (e.g., Rahman et al. [2019], Zhang et al. [2021a], and Zheng et al. [2021]). The growing body of work in this area has been supplemented by an increasing number of recent workshops (e.g., Cui et al. [2021], Ding et al. [2020], Jannach et al. [2020], and Yin et al. [2021]) and tutorials (e.g., Chen et al. [2020], Mehrotra et al. [2020], Tang and Dong [2019], Wang et al. [2020a], and Xu et al. [2018]). Despite such great
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信