B. Prashantha, G. Narasimham, S. Seetharamu, K. Manjunatha
{"title":"气体堵塞对热声制冷机理论性能的影响","authors":"B. Prashantha, G. Narasimham, S. Seetharamu, K. Manjunatha","doi":"10.1142/s2010132521500267","DOIUrl":null,"url":null,"abstract":"Thermoacoustic refrigeration is an emerging green, novel and promising alternate technology compared to vapor compression refrigerator systems for domestic cooling. It uses environmentally benign gases like air or helium or the mixture of inert gases as working substances and has no moving parts, no lubrication and no vibration. The cooler is designed and optimized with helium and air as refrigerants operating at 10[Formula: see text]bar with 3% drive ratio for the temperature difference of 28[Formula: see text]K and stack diameter of 200[Formula: see text]mm using linear thermoacoustic theory. In this paper, the effect of gas blockage (porosity) of the spiral-stack heat exchanger system ranging from 45% to 85% on the theoretical performance of the cooler is discussed. The one-third and one-fourth wavelength convergent–divergent resonator designs are optimized with air and helium as working substances, respectively, to improve performance and power density. The optimized coolers show best performance with 85% porosity. The theoretical results are validated with DeltaEC software simulation results. The simulation results show the coefficient of performance and cooling capacity of 0.93 and 219[Formula: see text]W for helium and of 0.50 and 139[Formula: see text]W for air, respectively, at the cold heat exchanger temperature of 0∘C.","PeriodicalId":13757,"journal":{"name":"International Journal of Air-conditioning and Refrigeration","volume":"1 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Effect of Gas Blockage on the Theoretical Performance of Thermoacoustic Refrigerators\",\"authors\":\"B. Prashantha, G. Narasimham, S. Seetharamu, K. Manjunatha\",\"doi\":\"10.1142/s2010132521500267\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Thermoacoustic refrigeration is an emerging green, novel and promising alternate technology compared to vapor compression refrigerator systems for domestic cooling. It uses environmentally benign gases like air or helium or the mixture of inert gases as working substances and has no moving parts, no lubrication and no vibration. The cooler is designed and optimized with helium and air as refrigerants operating at 10[Formula: see text]bar with 3% drive ratio for the temperature difference of 28[Formula: see text]K and stack diameter of 200[Formula: see text]mm using linear thermoacoustic theory. In this paper, the effect of gas blockage (porosity) of the spiral-stack heat exchanger system ranging from 45% to 85% on the theoretical performance of the cooler is discussed. The one-third and one-fourth wavelength convergent–divergent resonator designs are optimized with air and helium as working substances, respectively, to improve performance and power density. The optimized coolers show best performance with 85% porosity. The theoretical results are validated with DeltaEC software simulation results. The simulation results show the coefficient of performance and cooling capacity of 0.93 and 219[Formula: see text]W for helium and of 0.50 and 139[Formula: see text]W for air, respectively, at the cold heat exchanger temperature of 0∘C.\",\"PeriodicalId\":13757,\"journal\":{\"name\":\"International Journal of Air-conditioning and Refrigeration\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2021-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Air-conditioning and Refrigeration\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s2010132521500267\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"THERMODYNAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Air-conditioning and Refrigeration","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s2010132521500267","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
Effect of Gas Blockage on the Theoretical Performance of Thermoacoustic Refrigerators
Thermoacoustic refrigeration is an emerging green, novel and promising alternate technology compared to vapor compression refrigerator systems for domestic cooling. It uses environmentally benign gases like air or helium or the mixture of inert gases as working substances and has no moving parts, no lubrication and no vibration. The cooler is designed and optimized with helium and air as refrigerants operating at 10[Formula: see text]bar with 3% drive ratio for the temperature difference of 28[Formula: see text]K and stack diameter of 200[Formula: see text]mm using linear thermoacoustic theory. In this paper, the effect of gas blockage (porosity) of the spiral-stack heat exchanger system ranging from 45% to 85% on the theoretical performance of the cooler is discussed. The one-third and one-fourth wavelength convergent–divergent resonator designs are optimized with air and helium as working substances, respectively, to improve performance and power density. The optimized coolers show best performance with 85% porosity. The theoretical results are validated with DeltaEC software simulation results. The simulation results show the coefficient of performance and cooling capacity of 0.93 and 219[Formula: see text]W for helium and of 0.50 and 139[Formula: see text]W for air, respectively, at the cold heat exchanger temperature of 0∘C.
期刊介绍:
As the only international journal in the field of air-conditioning and refrigeration in Asia, IJACR reports researches on the equipments for controlling indoor environment and cooling/refrigeration. It includes broad range of applications and underlying theories including fluid dynamics, thermodynamics, heat transfer, and nano/bio-related technologies. In addition, it covers future energy technologies, such as fuel cell, wind turbine, solar cell/heat, geothermal energy and etc.