Yixin Ren, Hao Zhang, Yewei Xia, J. Guan, Shuigeng Zhou
{"title":"统计相关性测量的多级小波映射关联:方法与性能","authors":"Yixin Ren, Hao Zhang, Yewei Xia, J. Guan, Shuigeng Zhou","doi":"10.1609/aaai.v37i5.25799","DOIUrl":null,"url":null,"abstract":"We propose a new criterion for measuring dependence between two real variables, namely, Multi-level Wavelet Mapping Correlation (MWMC). MWMC can capture the nonlinear dependencies between variables by measuring their correlation under different levels of wavelet mappings. We show that the empirical estimate of MWMC converges exponentially to its population quantity. To support independence test better with MWMC, we further design a permutation test based on MWMC and prove that our test can not only control the type I error rate (the rate of false positives) well but also ensure that the type II error rate (the rate of false negatives) is upper bounded by O(1/n) (n is the sample size) with finite permutations. By extensive experiments on (conditional) independence tests and causal discovery, we show that our method outperforms existing independence test methods.","PeriodicalId":74506,"journal":{"name":"Proceedings of the ... AAAI Conference on Artificial Intelligence. AAAI Conference on Artificial Intelligence","volume":"53 1","pages":"6499-6506"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-Level Wavelet Mapping Correlation for Statistical Dependence Measurement: Methodology and Performance\",\"authors\":\"Yixin Ren, Hao Zhang, Yewei Xia, J. Guan, Shuigeng Zhou\",\"doi\":\"10.1609/aaai.v37i5.25799\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a new criterion for measuring dependence between two real variables, namely, Multi-level Wavelet Mapping Correlation (MWMC). MWMC can capture the nonlinear dependencies between variables by measuring their correlation under different levels of wavelet mappings. We show that the empirical estimate of MWMC converges exponentially to its population quantity. To support independence test better with MWMC, we further design a permutation test based on MWMC and prove that our test can not only control the type I error rate (the rate of false positives) well but also ensure that the type II error rate (the rate of false negatives) is upper bounded by O(1/n) (n is the sample size) with finite permutations. By extensive experiments on (conditional) independence tests and causal discovery, we show that our method outperforms existing independence test methods.\",\"PeriodicalId\":74506,\"journal\":{\"name\":\"Proceedings of the ... AAAI Conference on Artificial Intelligence. AAAI Conference on Artificial Intelligence\",\"volume\":\"53 1\",\"pages\":\"6499-6506\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ... AAAI Conference on Artificial Intelligence. AAAI Conference on Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1609/aaai.v37i5.25799\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... AAAI Conference on Artificial Intelligence. AAAI Conference on Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1609/aaai.v37i5.25799","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Multi-Level Wavelet Mapping Correlation for Statistical Dependence Measurement: Methodology and Performance
We propose a new criterion for measuring dependence between two real variables, namely, Multi-level Wavelet Mapping Correlation (MWMC). MWMC can capture the nonlinear dependencies between variables by measuring their correlation under different levels of wavelet mappings. We show that the empirical estimate of MWMC converges exponentially to its population quantity. To support independence test better with MWMC, we further design a permutation test based on MWMC and prove that our test can not only control the type I error rate (the rate of false positives) well but also ensure that the type II error rate (the rate of false negatives) is upper bounded by O(1/n) (n is the sample size) with finite permutations. By extensive experiments on (conditional) independence tests and causal discovery, we show that our method outperforms existing independence test methods.