{"title":"锥形深反应离子刻蚀:方法与表征","authors":"N. Roxhed, P. Griss, G. Stemme","doi":"10.1109/SENSOR.2007.4300175","DOIUrl":null,"url":null,"abstract":"This work presents a method for etching tapered sidewalls in silicon using deep reactive ion etching. The method is based on consecutive switching between anisotropic etching using the Bosch process and isotropic dry etching. By controlling the etch depths of the anisotropic and isotropic etch sessions, the sidewall angle can be controlled over a relatively large range, from 0deg (straight vertical) to 36deg. Tapered sidewalls are useful in microfabrication processes such as metal coating of 3D-structures (e.g. for electrical connections or vias), mold tool fabrication or as a tool to compensate for reentrant etching. The process represents an easy method to tailor the sidewall angle in deep etching of silicon. The etch scheme is run in a single etch system and can be implemented in ICP-systems of most manufactures. The method can also be used in conjunction with the standard Bosch process as demonstrated herein, where the method was applied to compensate for reentrant etching of high out-of-plane mesa-structures.","PeriodicalId":23295,"journal":{"name":"TRANSDUCERS 2007 - 2007 International Solid-State Sensors, Actuators and Microsystems Conference","volume":"54 1","pages":"493-496"},"PeriodicalIF":0.0000,"publicationDate":"2007-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Tapered Deep Reactive Ion Etching: Method and Characterization\",\"authors\":\"N. Roxhed, P. Griss, G. Stemme\",\"doi\":\"10.1109/SENSOR.2007.4300175\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work presents a method for etching tapered sidewalls in silicon using deep reactive ion etching. The method is based on consecutive switching between anisotropic etching using the Bosch process and isotropic dry etching. By controlling the etch depths of the anisotropic and isotropic etch sessions, the sidewall angle can be controlled over a relatively large range, from 0deg (straight vertical) to 36deg. Tapered sidewalls are useful in microfabrication processes such as metal coating of 3D-structures (e.g. for electrical connections or vias), mold tool fabrication or as a tool to compensate for reentrant etching. The process represents an easy method to tailor the sidewall angle in deep etching of silicon. The etch scheme is run in a single etch system and can be implemented in ICP-systems of most manufactures. The method can also be used in conjunction with the standard Bosch process as demonstrated herein, where the method was applied to compensate for reentrant etching of high out-of-plane mesa-structures.\",\"PeriodicalId\":23295,\"journal\":{\"name\":\"TRANSDUCERS 2007 - 2007 International Solid-State Sensors, Actuators and Microsystems Conference\",\"volume\":\"54 1\",\"pages\":\"493-496\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"TRANSDUCERS 2007 - 2007 International Solid-State Sensors, Actuators and Microsystems Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SENSOR.2007.4300175\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"TRANSDUCERS 2007 - 2007 International Solid-State Sensors, Actuators and Microsystems Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SENSOR.2007.4300175","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Tapered Deep Reactive Ion Etching: Method and Characterization
This work presents a method for etching tapered sidewalls in silicon using deep reactive ion etching. The method is based on consecutive switching between anisotropic etching using the Bosch process and isotropic dry etching. By controlling the etch depths of the anisotropic and isotropic etch sessions, the sidewall angle can be controlled over a relatively large range, from 0deg (straight vertical) to 36deg. Tapered sidewalls are useful in microfabrication processes such as metal coating of 3D-structures (e.g. for electrical connections or vias), mold tool fabrication or as a tool to compensate for reentrant etching. The process represents an easy method to tailor the sidewall angle in deep etching of silicon. The etch scheme is run in a single etch system and can be implemented in ICP-systems of most manufactures. The method can also be used in conjunction with the standard Bosch process as demonstrated herein, where the method was applied to compensate for reentrant etching of high out-of-plane mesa-structures.