{"title":"生成前n个阶乘和的公式","authors":"Prateek P. Kulkarni","doi":"10.5281/ZENODO.4007509","DOIUrl":null,"url":null,"abstract":"The author proposes to find a generic formula for the sum of first factorials (i.e. ∑ ! ). Also, the author puts to use Ramanujan approximation of factorial to create a variant for the factorial sum.","PeriodicalId":23650,"journal":{"name":"viXra","volume":"245 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Formula that Generates the Sum of First n Factorials\",\"authors\":\"Prateek P. Kulkarni\",\"doi\":\"10.5281/ZENODO.4007509\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The author proposes to find a generic formula for the sum of first factorials (i.e. ∑ ! ). Also, the author puts to use Ramanujan approximation of factorial to create a variant for the factorial sum.\",\"PeriodicalId\":23650,\"journal\":{\"name\":\"viXra\",\"volume\":\"245 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"viXra\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5281/ZENODO.4007509\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"viXra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5281/ZENODO.4007509","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Formula that Generates the Sum of First n Factorials
The author proposes to find a generic formula for the sum of first factorials (i.e. ∑ ! ). Also, the author puts to use Ramanujan approximation of factorial to create a variant for the factorial sum.