基于深度-宽度重构的快速精确二值神经网络

Ping Xue, Yang Lu, Jingfei Chang, Xing Wei, Zhenchun Wei
{"title":"基于深度-宽度重构的快速精确二值神经网络","authors":"Ping Xue, Yang Lu, Jingfei Chang, Xing Wei, Zhenchun Wei","doi":"10.1609/aaai.v37i9.26268","DOIUrl":null,"url":null,"abstract":"Network binarization (i.e., binary neural networks, BNNs) can efficiently compress deep neural networks and accelerate model inference but cause severe accuracy degradation. Existing BNNs are mainly implemented based on the commonly used full-precision network backbones, and then the accuracy is improved with various techniques. However, there is a question of whether the full-precision network backbone is well adapted to BNNs. We start from the factors of the performance degradation of BNNs and analyze the problems of directly using full-precision network backbones for BNNs: for a given computational budget, the backbone of a BNN may need to be shallower and wider compared to the backbone of a full-precision network. With this in mind, Depth-Width Reshaping (DWR) is proposed to reshape the depth and width of existing full-precision network backbones and further optimize them by incorporating pruning techniques to better fit the BNNs. Extensive experiments demonstrate the analytical result and the effectiveness of the proposed method. Compared with the original backbones, the DWR backbones constructed by the proposed method result in close to O(√s) decrease in activations, while achieving an absolute accuracy increase by up to 1.7% with comparable computational cost. Besides, by using the DWR backbones, existing methods can achieve new state-of-the-art (SOTA) accuracy (e.g., 67.2% on ImageNet with ResNet-18 as the original backbone). We hope this work provides a novel insight into the backbone design of BNNs. The code is available at https://github.com/pingxue-hfut/DWR.","PeriodicalId":74506,"journal":{"name":"Proceedings of the ... AAAI Conference on Artificial Intelligence. AAAI Conference on Artificial Intelligence","volume":"150 1","pages":"10684-10692"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fast and Accurate Binary Neural Networks Based on Depth-Width Reshaping\",\"authors\":\"Ping Xue, Yang Lu, Jingfei Chang, Xing Wei, Zhenchun Wei\",\"doi\":\"10.1609/aaai.v37i9.26268\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Network binarization (i.e., binary neural networks, BNNs) can efficiently compress deep neural networks and accelerate model inference but cause severe accuracy degradation. Existing BNNs are mainly implemented based on the commonly used full-precision network backbones, and then the accuracy is improved with various techniques. However, there is a question of whether the full-precision network backbone is well adapted to BNNs. We start from the factors of the performance degradation of BNNs and analyze the problems of directly using full-precision network backbones for BNNs: for a given computational budget, the backbone of a BNN may need to be shallower and wider compared to the backbone of a full-precision network. With this in mind, Depth-Width Reshaping (DWR) is proposed to reshape the depth and width of existing full-precision network backbones and further optimize them by incorporating pruning techniques to better fit the BNNs. Extensive experiments demonstrate the analytical result and the effectiveness of the proposed method. Compared with the original backbones, the DWR backbones constructed by the proposed method result in close to O(√s) decrease in activations, while achieving an absolute accuracy increase by up to 1.7% with comparable computational cost. Besides, by using the DWR backbones, existing methods can achieve new state-of-the-art (SOTA) accuracy (e.g., 67.2% on ImageNet with ResNet-18 as the original backbone). We hope this work provides a novel insight into the backbone design of BNNs. The code is available at https://github.com/pingxue-hfut/DWR.\",\"PeriodicalId\":74506,\"journal\":{\"name\":\"Proceedings of the ... AAAI Conference on Artificial Intelligence. AAAI Conference on Artificial Intelligence\",\"volume\":\"150 1\",\"pages\":\"10684-10692\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ... AAAI Conference on Artificial Intelligence. AAAI Conference on Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1609/aaai.v37i9.26268\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... AAAI Conference on Artificial Intelligence. AAAI Conference on Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1609/aaai.v37i9.26268","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

网络二值化(即二元神经网络,bnn)可以有效地压缩深度神经网络并加速模型推理,但会导致严重的精度下降。现有的bnn主要基于常用的全精度网络骨干网实现,然后通过各种技术提高精度。然而,全精度网络骨干网是否能很好地适应bnn是一个问题。我们从影响BNN性能下降的因素入手,分析了直接使用全精度网络骨干网的问题:对于给定的计算预算,与全精度网络骨干网相比,BNN的骨干网可能需要更浅、更宽。考虑到这一点,提出了深度-宽度重塑(DWR)来重塑现有的全精度网络骨干网的深度和宽度,并通过结合修剪技术进一步优化它们,以更好地适应bnn。大量的实验证明了分析结果和所提方法的有效性。与原始主干网相比,采用该方法构建的DWR主干网的激活次数减少了近0(√s),在计算成本相当的情况下,绝对精度提高了1.7%。此外,通过使用DWR主干,现有方法可以达到新的最先进的(SOTA)精度(例如,在使用ResNet-18作为原始主干的ImageNet上,精度为67.2%)。我们希望这项工作能为bnn的主干设计提供新的见解。代码可在https://github.com/pingxue-hfut/DWR上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fast and Accurate Binary Neural Networks Based on Depth-Width Reshaping
Network binarization (i.e., binary neural networks, BNNs) can efficiently compress deep neural networks and accelerate model inference but cause severe accuracy degradation. Existing BNNs are mainly implemented based on the commonly used full-precision network backbones, and then the accuracy is improved with various techniques. However, there is a question of whether the full-precision network backbone is well adapted to BNNs. We start from the factors of the performance degradation of BNNs and analyze the problems of directly using full-precision network backbones for BNNs: for a given computational budget, the backbone of a BNN may need to be shallower and wider compared to the backbone of a full-precision network. With this in mind, Depth-Width Reshaping (DWR) is proposed to reshape the depth and width of existing full-precision network backbones and further optimize them by incorporating pruning techniques to better fit the BNNs. Extensive experiments demonstrate the analytical result and the effectiveness of the proposed method. Compared with the original backbones, the DWR backbones constructed by the proposed method result in close to O(√s) decrease in activations, while achieving an absolute accuracy increase by up to 1.7% with comparable computational cost. Besides, by using the DWR backbones, existing methods can achieve new state-of-the-art (SOTA) accuracy (e.g., 67.2% on ImageNet with ResNet-18 as the original backbone). We hope this work provides a novel insight into the backbone design of BNNs. The code is available at https://github.com/pingxue-hfut/DWR.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信