{"title":"一般蔗蜍局部模型的超线性传播","authors":"Christopher Henderson, B. Perthame, P. Souganidis","doi":"10.4171/IFB/409","DOIUrl":null,"url":null,"abstract":"We investigate a general, local version of the cane toads equation, which models the spread of a population structured by unbounded motility. We use the thin-front limit approach of Evans and Souganidis in [Indiana Univ. Math. J., 1989] to obtain a characterization of the propagation in terms of both the linearized equation and a geometric front equation. In particular, we reduce the task of understanding the precise location of the front for a large class of equations to analyzing a much smaller class of Hamilton-Jacobi equations. We are then able to give an explicit formula for the front location in physical space. One advantage of our approach is that we do not use the explicit trajectories along which the population spreads, which was a basis of previous work. Our result allows for large oscillations in the motility.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2017-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Super-linear propagation for a general, local cane toads model\",\"authors\":\"Christopher Henderson, B. Perthame, P. Souganidis\",\"doi\":\"10.4171/IFB/409\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate a general, local version of the cane toads equation, which models the spread of a population structured by unbounded motility. We use the thin-front limit approach of Evans and Souganidis in [Indiana Univ. Math. J., 1989] to obtain a characterization of the propagation in terms of both the linearized equation and a geometric front equation. In particular, we reduce the task of understanding the precise location of the front for a large class of equations to analyzing a much smaller class of Hamilton-Jacobi equations. We are then able to give an explicit formula for the front location in physical space. One advantage of our approach is that we do not use the explicit trajectories along which the population spreads, which was a basis of previous work. Our result allows for large oscillations in the motility.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2017-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/IFB/409\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/IFB/409","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Super-linear propagation for a general, local cane toads model
We investigate a general, local version of the cane toads equation, which models the spread of a population structured by unbounded motility. We use the thin-front limit approach of Evans and Souganidis in [Indiana Univ. Math. J., 1989] to obtain a characterization of the propagation in terms of both the linearized equation and a geometric front equation. In particular, we reduce the task of understanding the precise location of the front for a large class of equations to analyzing a much smaller class of Hamilton-Jacobi equations. We are then able to give an explicit formula for the front location in physical space. One advantage of our approach is that we do not use the explicit trajectories along which the population spreads, which was a basis of previous work. Our result allows for large oscillations in the motility.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.