风电并网供电稳定控制模型的建立

Xiao Xue, Yangbin Zheng, Chao Lu
{"title":"风电并网供电稳定控制模型的建立","authors":"Xiao Xue, Yangbin Zheng, Chao Lu","doi":"10.13052/dgaej2156-3306.3767","DOIUrl":null,"url":null,"abstract":"There are many problems in the power supply stability control of wind power generation system, such as large fluctuations, poor control effect and so on. Therefore, a new stability control model of wind power grid connected is designed. Determine the DC grid connection mode when the wind farm is connected, convert the DC power into AC power through the converter station, and transmit it to the final AC system to realize the grid connection of wind power and power grid; According to the determined wind power access mode, calculate the mechanical operation power, mechanical torque and wind energy utilization coefficient collected by the wind turbine, complete the best collection of wind energy, and determine the shafting according to the mass block model of the wind turbine and generator, so as to realize the research on the mathematical model of wind power generation. By analyzing the power flow direction of the stator and rotor of the wind turbine generator set, the unstable state of the power supply voltage of the wind turbine generator set after grid connection is determined. The PV curve method is used to calculate the steady-state voltage stability of grid connected wind turbines, and a power supply stability control model based on the voltage stability of grid connected wind turbines is established. The nonlinear objective function method is used to optimize the critical point of power supply stability, calculate the maximum load and maximum power of the system, establish the static power supply and transient power supply stability model after wind power grid connection, and realize the power supply stability control research of grid connected wind power through the analysis of power supply characteristics. The experimental results show that the model is closer to the stability of the actual power supply in the test of improving the stability of the power supply, ensuring the quality of power supply, while the test results of the other two methods have large fluctuations. In the analysis of the change of power supply after grid connection, the experimental results obtained by the model are very close to the actual data values. Therefore, this method can effectively improve the performance of power system.","PeriodicalId":11205,"journal":{"name":"Distributed Generation & Alternative Energy Journal","volume":"119 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Construction of Power Supply Stability Control Model for Wind Connected Power Grid\",\"authors\":\"Xiao Xue, Yangbin Zheng, Chao Lu\",\"doi\":\"10.13052/dgaej2156-3306.3767\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There are many problems in the power supply stability control of wind power generation system, such as large fluctuations, poor control effect and so on. Therefore, a new stability control model of wind power grid connected is designed. Determine the DC grid connection mode when the wind farm is connected, convert the DC power into AC power through the converter station, and transmit it to the final AC system to realize the grid connection of wind power and power grid; According to the determined wind power access mode, calculate the mechanical operation power, mechanical torque and wind energy utilization coefficient collected by the wind turbine, complete the best collection of wind energy, and determine the shafting according to the mass block model of the wind turbine and generator, so as to realize the research on the mathematical model of wind power generation. By analyzing the power flow direction of the stator and rotor of the wind turbine generator set, the unstable state of the power supply voltage of the wind turbine generator set after grid connection is determined. The PV curve method is used to calculate the steady-state voltage stability of grid connected wind turbines, and a power supply stability control model based on the voltage stability of grid connected wind turbines is established. The nonlinear objective function method is used to optimize the critical point of power supply stability, calculate the maximum load and maximum power of the system, establish the static power supply and transient power supply stability model after wind power grid connection, and realize the power supply stability control research of grid connected wind power through the analysis of power supply characteristics. The experimental results show that the model is closer to the stability of the actual power supply in the test of improving the stability of the power supply, ensuring the quality of power supply, while the test results of the other two methods have large fluctuations. In the analysis of the change of power supply after grid connection, the experimental results obtained by the model are very close to the actual data values. Therefore, this method can effectively improve the performance of power system.\",\"PeriodicalId\":11205,\"journal\":{\"name\":\"Distributed Generation & Alternative Energy Journal\",\"volume\":\"119 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Distributed Generation & Alternative Energy Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13052/dgaej2156-3306.3767\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Distributed Generation & Alternative Energy Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13052/dgaej2156-3306.3767","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

风力发电系统的供电稳定控制存在波动大、控制效果差等诸多问题。为此,设计了一种新的风电并网稳定控制模型。确定风电场并网时的直流并网方式,将直流电通过换流站转换成交流电,输送到最终的交流系统,实现风电与电网并网;根据确定的风电接入方式,计算风机收集的机械运行功率、机械转矩和风能利用系数,完成风能的最佳收集,并根据风机和发电机的质量块模型确定轴系,从而实现风电数学模型的研究。通过分析风力发电机组定子和转子的功率流向,确定了风力发电机组并网后供电电压的不稳定状态。采用PV曲线法计算并网风力发电机组的稳态电压稳定性,建立了基于并网风力发电机组电压稳定性的供电稳定控制模型。采用非线性目标函数法优化供电稳定临界点,计算系统最大负荷和最大功率,建立风电并网后静态供电和暂态供电稳定模型,通过对供电特性的分析,实现并网风电供电稳定控制研究。实验结果表明,该模型在提高电源稳定性、保证供电质量的测试中更接近实际电源的稳定性,而另外两种方法的测试结果波动较大。在对电网并网后供电变化的分析中,该模型得到的实验结果与实际数据值非常接近。因此,该方法可以有效地提高电力系统的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Construction of Power Supply Stability Control Model for Wind Connected Power Grid
There are many problems in the power supply stability control of wind power generation system, such as large fluctuations, poor control effect and so on. Therefore, a new stability control model of wind power grid connected is designed. Determine the DC grid connection mode when the wind farm is connected, convert the DC power into AC power through the converter station, and transmit it to the final AC system to realize the grid connection of wind power and power grid; According to the determined wind power access mode, calculate the mechanical operation power, mechanical torque and wind energy utilization coefficient collected by the wind turbine, complete the best collection of wind energy, and determine the shafting according to the mass block model of the wind turbine and generator, so as to realize the research on the mathematical model of wind power generation. By analyzing the power flow direction of the stator and rotor of the wind turbine generator set, the unstable state of the power supply voltage of the wind turbine generator set after grid connection is determined. The PV curve method is used to calculate the steady-state voltage stability of grid connected wind turbines, and a power supply stability control model based on the voltage stability of grid connected wind turbines is established. The nonlinear objective function method is used to optimize the critical point of power supply stability, calculate the maximum load and maximum power of the system, establish the static power supply and transient power supply stability model after wind power grid connection, and realize the power supply stability control research of grid connected wind power through the analysis of power supply characteristics. The experimental results show that the model is closer to the stability of the actual power supply in the test of improving the stability of the power supply, ensuring the quality of power supply, while the test results of the other two methods have large fluctuations. In the analysis of the change of power supply after grid connection, the experimental results obtained by the model are very close to the actual data values. Therefore, this method can effectively improve the performance of power system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信