{"title":"半定规划的齐次内点算法的Matlab实现","authors":"Nathan W. Brixius, F. Potra, Rongqin Sheng","doi":"10.1080/10556789908805763","DOIUrl":null,"url":null,"abstract":"Mehrotra type primal-dual predictor-corrector interior-point algorithms for semidefinite programming are implemented, using the homogeneous formulation proposed and analyzed by Potra and Sheng. Several search directions, including the AHO, HKM, NT, Toh, and Gu directions, are used. A rank-2 update technique is employed in our MATLAB code so that the computation of homogeneous directions is only slightly more expensive than in the non-homogeneous case. However, the homogeneous algorithms generally take fewer iterations to compute an approximate solution within a desired accuracy. Numerical results show that the homogeneous algorithms outperform their non-homogeneous counterparts, with improvement of more than 20% in many cases, in terms of total CPU time.","PeriodicalId":54673,"journal":{"name":"Optimization Methods & Software","volume":"136 1","pages":"583-596"},"PeriodicalIF":1.4000,"publicationDate":"1999-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":"{\"title\":\"Sdpha: a Matlab implementation of homogeneous interior-point algorithms for semidefinite programming\",\"authors\":\"Nathan W. Brixius, F. Potra, Rongqin Sheng\",\"doi\":\"10.1080/10556789908805763\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mehrotra type primal-dual predictor-corrector interior-point algorithms for semidefinite programming are implemented, using the homogeneous formulation proposed and analyzed by Potra and Sheng. Several search directions, including the AHO, HKM, NT, Toh, and Gu directions, are used. A rank-2 update technique is employed in our MATLAB code so that the computation of homogeneous directions is only slightly more expensive than in the non-homogeneous case. However, the homogeneous algorithms generally take fewer iterations to compute an approximate solution within a desired accuracy. Numerical results show that the homogeneous algorithms outperform their non-homogeneous counterparts, with improvement of more than 20% in many cases, in terms of total CPU time.\",\"PeriodicalId\":54673,\"journal\":{\"name\":\"Optimization Methods & Software\",\"volume\":\"136 1\",\"pages\":\"583-596\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"1999-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"34\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optimization Methods & Software\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/10556789908805763\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optimization Methods & Software","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10556789908805763","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
Sdpha: a Matlab implementation of homogeneous interior-point algorithms for semidefinite programming
Mehrotra type primal-dual predictor-corrector interior-point algorithms for semidefinite programming are implemented, using the homogeneous formulation proposed and analyzed by Potra and Sheng. Several search directions, including the AHO, HKM, NT, Toh, and Gu directions, are used. A rank-2 update technique is employed in our MATLAB code so that the computation of homogeneous directions is only slightly more expensive than in the non-homogeneous case. However, the homogeneous algorithms generally take fewer iterations to compute an approximate solution within a desired accuracy. Numerical results show that the homogeneous algorithms outperform their non-homogeneous counterparts, with improvement of more than 20% in many cases, in terms of total CPU time.
期刊介绍:
Optimization Methods and Software
publishes refereed papers on the latest developments in the theory and realization of optimization methods, with particular emphasis on the interface between software development and algorithm design.
Topics include:
Theory, implementation and performance evaluation of algorithms and computer codes for linear, nonlinear, discrete, stochastic optimization and optimal control. This includes in particular conic, semi-definite, mixed integer, network, non-smooth, multi-objective and global optimization by deterministic or nondeterministic algorithms.
Algorithms and software for complementarity, variational inequalities and equilibrium problems, and also for solving inverse problems, systems of nonlinear equations and the numerical study of parameter dependent operators.
Various aspects of efficient and user-friendly implementations: e.g. automatic differentiation, massively parallel optimization, distributed computing, on-line algorithms, error sensitivity and validity analysis, problem scaling, stopping criteria and symbolic numeric interfaces.
Theoretical studies with clear potential for applications and successful applications of specially adapted optimization methods and software to fields like engineering, machine learning, data mining, economics, finance, biology, or medicine. These submissions should not consist solely of the straightforward use of standard optimization techniques.