{"title":"流体微阀的建模新设计","authors":"A. Pandolfi, M. Ortiz","doi":"10.1109/ESIME.2006.1643971","DOIUrl":null,"url":null,"abstract":"We present a new design of PDMS microvalves based on bistable configuration of the separation membrane. PDMS elastomers are sensitive to several chemical solvents, which induce changes in the mechanical properties and swelling of the material. By using a soft rubber constitutive model, we numerically analyze the performance of new design of microvalves and microfluidic systems, able to reduce the magnitude of the activation pressure and the duration of the activation time","PeriodicalId":60796,"journal":{"name":"微纳电子与智能制造","volume":"142 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2006-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Modeling New Design of Fluidic Microvalves\",\"authors\":\"A. Pandolfi, M. Ortiz\",\"doi\":\"10.1109/ESIME.2006.1643971\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a new design of PDMS microvalves based on bistable configuration of the separation membrane. PDMS elastomers are sensitive to several chemical solvents, which induce changes in the mechanical properties and swelling of the material. By using a soft rubber constitutive model, we numerically analyze the performance of new design of microvalves and microfluidic systems, able to reduce the magnitude of the activation pressure and the duration of the activation time\",\"PeriodicalId\":60796,\"journal\":{\"name\":\"微纳电子与智能制造\",\"volume\":\"142 1\",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"微纳电子与智能制造\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://doi.org/10.1109/ESIME.2006.1643971\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"微纳电子与智能制造","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.1109/ESIME.2006.1643971","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We present a new design of PDMS microvalves based on bistable configuration of the separation membrane. PDMS elastomers are sensitive to several chemical solvents, which induce changes in the mechanical properties and swelling of the material. By using a soft rubber constitutive model, we numerically analyze the performance of new design of microvalves and microfluidic systems, able to reduce the magnitude of the activation pressure and the duration of the activation time