Pedro Julián García-Guarín, Julián Cantor-López, Camilo Andrés Cortés-Guerrero, María Alejandra Guzmán-Pardo, S. Rivera
{"title":"智能分布式电网能源调度VNS-DEEPSO算法的实现","authors":"Pedro Julián García-Guarín, Julián Cantor-López, Camilo Andrés Cortés-Guerrero, María Alejandra Guzmán-Pardo, S. Rivera","doi":"10.17981/INGECUC.15.1.2019.13","DOIUrl":null,"url":null,"abstract":"Introducción: Las redes eléctricas tradicionales están migrando a nuevas configuraciones de redes inteligentes, que traen retos operacionales y de planeación. Con miras a avanzar en estos retos se propone resolver un problema de optimización usando programación en elementos de redes distribuidas inteligentes. \nObjetivo: El problema de optimización consiste en administrar el despacho energético de una red inteligente para optimizar los recursos disponibles, considerando la incertidumbre de energías renovables, viajes planeados de vehículos eléctricos, el pronóstico de carga y los precios del mercado. \nMetodología: Se propuso utilizar un ensamble entre dos métodos heurísticos. El algoritmo VNS (Variable Neighborhood Search) y el DEEPSO (Differential Evolutionary Particle Swarm). \nResultados: El algoritmo VNS-DEEPSO fue evaluado en una competencia de “Smart Grids” con otros algoritmos con un valor de 18.21, siendo 7 % mejor que el segundo algoritmo clasificado en la competencia. \nConclusiones: El algoritmo VNS-DEEPSO fue ganador entre 9 algoritmos metaheurísticos que solucionaron el problema, este problema tenía un mayor incremento de dificultad debida a la incertidumbre generada por factores ambientales, pronóstico de carga, viajes en vehículos eléctricos y el mercado de precios. Acorde a los resultados, el algoritmo VNS-DEEPSO demostró ser el más eficiente en minimizar los costos operacionales y maximizar los ingresos de la red inteligente.","PeriodicalId":41463,"journal":{"name":"INGE CUC","volume":null,"pages":null},"PeriodicalIF":0.3000,"publicationDate":"2019-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Implementación del algoritmo VNS-DEEPSO para el despacho de energía en redes distribuidas inteligentes\",\"authors\":\"Pedro Julián García-Guarín, Julián Cantor-López, Camilo Andrés Cortés-Guerrero, María Alejandra Guzmán-Pardo, S. Rivera\",\"doi\":\"10.17981/INGECUC.15.1.2019.13\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Introducción: Las redes eléctricas tradicionales están migrando a nuevas configuraciones de redes inteligentes, que traen retos operacionales y de planeación. Con miras a avanzar en estos retos se propone resolver un problema de optimización usando programación en elementos de redes distribuidas inteligentes. \\nObjetivo: El problema de optimización consiste en administrar el despacho energético de una red inteligente para optimizar los recursos disponibles, considerando la incertidumbre de energías renovables, viajes planeados de vehículos eléctricos, el pronóstico de carga y los precios del mercado. \\nMetodología: Se propuso utilizar un ensamble entre dos métodos heurísticos. El algoritmo VNS (Variable Neighborhood Search) y el DEEPSO (Differential Evolutionary Particle Swarm). \\nResultados: El algoritmo VNS-DEEPSO fue evaluado en una competencia de “Smart Grids” con otros algoritmos con un valor de 18.21, siendo 7 % mejor que el segundo algoritmo clasificado en la competencia. \\nConclusiones: El algoritmo VNS-DEEPSO fue ganador entre 9 algoritmos metaheurísticos que solucionaron el problema, este problema tenía un mayor incremento de dificultad debida a la incertidumbre generada por factores ambientales, pronóstico de carga, viajes en vehículos eléctricos y el mercado de precios. Acorde a los resultados, el algoritmo VNS-DEEPSO demostró ser el más eficiente en minimizar los costos operacionales y maximizar los ingresos de la red inteligente.\",\"PeriodicalId\":41463,\"journal\":{\"name\":\"INGE CUC\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2019-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"INGE CUC\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17981/INGECUC.15.1.2019.13\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"INGE CUC","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17981/INGECUC.15.1.2019.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Implementación del algoritmo VNS-DEEPSO para el despacho de energía en redes distribuidas inteligentes
Introducción: Las redes eléctricas tradicionales están migrando a nuevas configuraciones de redes inteligentes, que traen retos operacionales y de planeación. Con miras a avanzar en estos retos se propone resolver un problema de optimización usando programación en elementos de redes distribuidas inteligentes.
Objetivo: El problema de optimización consiste en administrar el despacho energético de una red inteligente para optimizar los recursos disponibles, considerando la incertidumbre de energías renovables, viajes planeados de vehículos eléctricos, el pronóstico de carga y los precios del mercado.
Metodología: Se propuso utilizar un ensamble entre dos métodos heurísticos. El algoritmo VNS (Variable Neighborhood Search) y el DEEPSO (Differential Evolutionary Particle Swarm).
Resultados: El algoritmo VNS-DEEPSO fue evaluado en una competencia de “Smart Grids” con otros algoritmos con un valor de 18.21, siendo 7 % mejor que el segundo algoritmo clasificado en la competencia.
Conclusiones: El algoritmo VNS-DEEPSO fue ganador entre 9 algoritmos metaheurísticos que solucionaron el problema, este problema tenía un mayor incremento de dificultad debida a la incertidumbre generada por factores ambientales, pronóstico de carga, viajes en vehículos eléctricos y el mercado de precios. Acorde a los resultados, el algoritmo VNS-DEEPSO demostró ser el más eficiente en minimizar los costos operacionales y maximizar los ingresos de la red inteligente.