D. Gaied, M. Khairy, M. Atef, A. Ahmed, M. Shadoufa, A. Hassanein, O. El-Aassar, M. Gamal, A. El-Sayed, A. Badawy, A. Adel, M. Erfan, N. Sinoussi, A. Helmy
{"title":"基于CMOS lc的频率基准,稳定性为±40ppm,范围为- 40°C至105°C","authors":"D. Gaied, M. Khairy, M. Atef, A. Ahmed, M. Shadoufa, A. Hassanein, O. El-Aassar, M. Gamal, A. El-Sayed, A. Badawy, A. Adel, M. Erfan, N. Sinoussi, A. Helmy","doi":"10.1109/FCS.2015.7138811","DOIUrl":null,"url":null,"abstract":"This work presents a highly stable monolithic integrated CMOS LC-based frequency reference. The frequency reference is based on a Self-Compensated Oscillator (SCO) architecture where the LC tank operates at a specific phase Phi-NULL where frequency sensitivity versus temperature is minimum. A new compensation technique is applied over Phi-Null to further optimize frequency stability and extend the temperature range. The new technique is based on an analog approach and induces a minimum impact on oscillator phase noise, current consumption and die area. Utilizing this technique, the temperature range has been extended to (-40-105°C) with a ±40ppm frequency stability. Achieved performance makes it possible for the SCO to be introduced to automotive applications where crystals suffer vibration induced stability issues.","PeriodicalId":57667,"journal":{"name":"时间频率公报","volume":"136 1","pages":"151-154"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A CMOS LC-based frequency reference with ±40ppm stability from −40°C to 105°C\",\"authors\":\"D. Gaied, M. Khairy, M. Atef, A. Ahmed, M. Shadoufa, A. Hassanein, O. El-Aassar, M. Gamal, A. El-Sayed, A. Badawy, A. Adel, M. Erfan, N. Sinoussi, A. Helmy\",\"doi\":\"10.1109/FCS.2015.7138811\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work presents a highly stable monolithic integrated CMOS LC-based frequency reference. The frequency reference is based on a Self-Compensated Oscillator (SCO) architecture where the LC tank operates at a specific phase Phi-NULL where frequency sensitivity versus temperature is minimum. A new compensation technique is applied over Phi-Null to further optimize frequency stability and extend the temperature range. The new technique is based on an analog approach and induces a minimum impact on oscillator phase noise, current consumption and die area. Utilizing this technique, the temperature range has been extended to (-40-105°C) with a ±40ppm frequency stability. Achieved performance makes it possible for the SCO to be introduced to automotive applications where crystals suffer vibration induced stability issues.\",\"PeriodicalId\":57667,\"journal\":{\"name\":\"时间频率公报\",\"volume\":\"136 1\",\"pages\":\"151-154\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"时间频率公报\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.1109/FCS.2015.7138811\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"时间频率公报","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1109/FCS.2015.7138811","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A CMOS LC-based frequency reference with ±40ppm stability from −40°C to 105°C
This work presents a highly stable monolithic integrated CMOS LC-based frequency reference. The frequency reference is based on a Self-Compensated Oscillator (SCO) architecture where the LC tank operates at a specific phase Phi-NULL where frequency sensitivity versus temperature is minimum. A new compensation technique is applied over Phi-Null to further optimize frequency stability and extend the temperature range. The new technique is based on an analog approach and induces a minimum impact on oscillator phase noise, current consumption and die area. Utilizing this technique, the temperature range has been extended to (-40-105°C) with a ±40ppm frequency stability. Achieved performance makes it possible for the SCO to be introduced to automotive applications where crystals suffer vibration induced stability issues.