O. Rubin, Evgenii N. Bellendir, I. Baklykov, Oksana V. Ziuzina, Mikhail V. Shaitanov
{"title":"研究玄武岩-复合预应力加固水闸室墙的计算方法,考虑了水闸室墙运行工况的相关数据","authors":"O. Rubin, Evgenii N. Bellendir, I. Baklykov, Oksana V. Ziuzina, Mikhail V. Shaitanov","doi":"10.22227/2305-5502.2022.3.2","DOIUrl":null,"url":null,"abstract":"Introduction. Calculation studies have shown that due to the long-term operation of hydraulic structures of the sluice, opening of horizontal and vertical construction joints, as well as corrosion of reinforcement at the rear edge of the reinforced concrete wall of the sluice in the areas of horizontal construction joints, the bearing capacity of the structure as a whole is reduced. In this regard, it is necessary to strengthen the structure, the methodology of which is given in this study. Materials and methods. The analysis of scientific and technical documentation has been made, instrumental examination of the state of structures has been carried out, a spatial mathematical model has been developed on the basis of the finite-element method. Multivariant calculated researches of the actual stressed-strained state (SSS) of structures have been made. Calculation studies of the SSS structures were performed taking into account the reinforcement of prestressed basalt composite reinforcement (BCR). Results. Visual and instrumental inspection showed a presence of cracking on the front face of the reinforced concrete wall of the sluice chamber. Modeling of the actual state of SSS structures is performed, according to the results of calculations, a scheme for strengthening structures of prestressed BCR is proposed and justified. Conclusions. As a result of the calculated studies of the deflected stresses, the occurrence of cracks and opening of horizontal and vertical construction joints in the reinforced concrete structure of the sluice chamber wall was confirmed. At the same time, taking into account corrosion of reinforcement at the rear edge of the sluice’s reinforced concrete wall in the areas of horizontal construction joints, stresses in it reach the design resistance of the reinforcement of class A-II. In order to ensure further safe operation of the structures, the scheme of strengthening the structures with prestressed BCR has been proposed and substantiated.","PeriodicalId":30543,"journal":{"name":"Stroitel''stvo Nauka i Obrazovanie","volume":"220 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Calculation methods for investigating the reinforcement of sluice chamber walls by basalt-composite prestressed reinforcement taking into account relevant data on their operational condition\",\"authors\":\"O. Rubin, Evgenii N. Bellendir, I. Baklykov, Oksana V. Ziuzina, Mikhail V. Shaitanov\",\"doi\":\"10.22227/2305-5502.2022.3.2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Introduction. Calculation studies have shown that due to the long-term operation of hydraulic structures of the sluice, opening of horizontal and vertical construction joints, as well as corrosion of reinforcement at the rear edge of the reinforced concrete wall of the sluice in the areas of horizontal construction joints, the bearing capacity of the structure as a whole is reduced. In this regard, it is necessary to strengthen the structure, the methodology of which is given in this study. Materials and methods. The analysis of scientific and technical documentation has been made, instrumental examination of the state of structures has been carried out, a spatial mathematical model has been developed on the basis of the finite-element method. Multivariant calculated researches of the actual stressed-strained state (SSS) of structures have been made. Calculation studies of the SSS structures were performed taking into account the reinforcement of prestressed basalt composite reinforcement (BCR). Results. Visual and instrumental inspection showed a presence of cracking on the front face of the reinforced concrete wall of the sluice chamber. Modeling of the actual state of SSS structures is performed, according to the results of calculations, a scheme for strengthening structures of prestressed BCR is proposed and justified. Conclusions. As a result of the calculated studies of the deflected stresses, the occurrence of cracks and opening of horizontal and vertical construction joints in the reinforced concrete structure of the sluice chamber wall was confirmed. At the same time, taking into account corrosion of reinforcement at the rear edge of the sluice’s reinforced concrete wall in the areas of horizontal construction joints, stresses in it reach the design resistance of the reinforcement of class A-II. In order to ensure further safe operation of the structures, the scheme of strengthening the structures with prestressed BCR has been proposed and substantiated.\",\"PeriodicalId\":30543,\"journal\":{\"name\":\"Stroitel''stvo Nauka i Obrazovanie\",\"volume\":\"220 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stroitel''stvo Nauka i Obrazovanie\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22227/2305-5502.2022.3.2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stroitel''stvo Nauka i Obrazovanie","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22227/2305-5502.2022.3.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Calculation methods for investigating the reinforcement of sluice chamber walls by basalt-composite prestressed reinforcement taking into account relevant data on their operational condition
Introduction. Calculation studies have shown that due to the long-term operation of hydraulic structures of the sluice, opening of horizontal and vertical construction joints, as well as corrosion of reinforcement at the rear edge of the reinforced concrete wall of the sluice in the areas of horizontal construction joints, the bearing capacity of the structure as a whole is reduced. In this regard, it is necessary to strengthen the structure, the methodology of which is given in this study. Materials and methods. The analysis of scientific and technical documentation has been made, instrumental examination of the state of structures has been carried out, a spatial mathematical model has been developed on the basis of the finite-element method. Multivariant calculated researches of the actual stressed-strained state (SSS) of structures have been made. Calculation studies of the SSS structures were performed taking into account the reinforcement of prestressed basalt composite reinforcement (BCR). Results. Visual and instrumental inspection showed a presence of cracking on the front face of the reinforced concrete wall of the sluice chamber. Modeling of the actual state of SSS structures is performed, according to the results of calculations, a scheme for strengthening structures of prestressed BCR is proposed and justified. Conclusions. As a result of the calculated studies of the deflected stresses, the occurrence of cracks and opening of horizontal and vertical construction joints in the reinforced concrete structure of the sluice chamber wall was confirmed. At the same time, taking into account corrosion of reinforcement at the rear edge of the sluice’s reinforced concrete wall in the areas of horizontal construction joints, stresses in it reach the design resistance of the reinforcement of class A-II. In order to ensure further safe operation of the structures, the scheme of strengthening the structures with prestressed BCR has been proposed and substantiated.