外域上全非线性方程解的渐近性质

Pub Date : 2021-01-25 DOI:10.5802/CRMATH.138
Xiaobiao Jia
{"title":"外域上全非线性方程解的渐近性质","authors":"Xiaobiao Jia","doi":"10.5802/CRMATH.138","DOIUrl":null,"url":null,"abstract":"In this paper, we consider the asymptotic behavior at infinity of solutions of a class of fully nonlinear elliptic equations F (D2u) = f (x) over exterior domains, where the Hessian matrix (D2u) tends to some symmetric positive definite matrix at infinity and f (x) = O(|x|−t ) at infinity with sharp condition t > 2. Moreover, we also obtain the same result if (D2u) is only very close to some symmetric positive definite matrix at infinity. 2020 Mathematics Subject Classification. 35J60, 35B40. Manuscript received 4th September 2020, revised 9th October 2020, accepted 25th October 2020.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Asymptotic behavior of solutions of fully nonlinear equations over exterior domains\",\"authors\":\"Xiaobiao Jia\",\"doi\":\"10.5802/CRMATH.138\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we consider the asymptotic behavior at infinity of solutions of a class of fully nonlinear elliptic equations F (D2u) = f (x) over exterior domains, where the Hessian matrix (D2u) tends to some symmetric positive definite matrix at infinity and f (x) = O(|x|−t ) at infinity with sharp condition t > 2. Moreover, we also obtain the same result if (D2u) is only very close to some symmetric positive definite matrix at infinity. 2020 Mathematics Subject Classification. 35J60, 35B40. Manuscript received 4th September 2020, revised 9th October 2020, accepted 25th October 2020.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.5802/CRMATH.138\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5802/CRMATH.138","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文考虑了一类完全非线性椭圆方程F (D2u) = F (x)在外域上解在无穷远处的渐近性,其中Hessian矩阵(D2u)在无穷远处趋向于某个对称正定矩阵,F (x)在无穷远处= O(|x|−t),且尖锐条件为t |。此外,当(D2u)仅在无穷远处非常接近某个对称正定矩阵时,我们也得到了同样的结果。2020数学学科分类。35J60, 35B40。2020年9月4日收稿,2020年10月9日改稿,2020年10月25日收稿。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Asymptotic behavior of solutions of fully nonlinear equations over exterior domains
In this paper, we consider the asymptotic behavior at infinity of solutions of a class of fully nonlinear elliptic equations F (D2u) = f (x) over exterior domains, where the Hessian matrix (D2u) tends to some symmetric positive definite matrix at infinity and f (x) = O(|x|−t ) at infinity with sharp condition t > 2. Moreover, we also obtain the same result if (D2u) is only very close to some symmetric positive definite matrix at infinity. 2020 Mathematics Subject Classification. 35J60, 35B40. Manuscript received 4th September 2020, revised 9th October 2020, accepted 25th October 2020.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信