Z. Wang, Mengmeng Ren, J. Zhao, Z. Zhang, H. Wang, A.-L. Hu, Ya-ru Cui
{"title":"含挥发物的结晶器助焊剂半球面点温度不确定性问题的表征与分析","authors":"Z. Wang, Mengmeng Ren, J. Zhao, Z. Zhang, H. Wang, A.-L. Hu, Ya-ru Cui","doi":"10.2298/jmmb211209019w","DOIUrl":null,"url":null,"abstract":"In hemisphere point temperature (Thp) measurement of continuous casting mold flux, the evaporation of volatiles under high temperature will have a strong impact on the results. Based on the comprehensive analysis of hemisphere point method and its influencing factors, the corresponding volatile-containing mold flux and non-volatile mold flux were selected to get Thp with different heating rates. Combined with the Thp measurement and TG-DSC results, the effect of relevant factors during measuring process were analysed and the way to characterize and evaluate the effects were suggested. Furthermore, an improved method of mold flux melting point test was put forward. The results showed that for non-volatile mold flux, the temperature hysteresis has a greater effect than heat transfer delay and fractional melting. And for mold flux with volatile, the effect of evaporation is greater than other factors. Traditional hemisphere-point method is no longer suitable for the volatile mold flux. In order to get through this problem, improved methods were proposed. One is measuring Thp by traditional way, correcting the composition at the Thp, corresponding Thp with the corrected composition. Another is taking the initial composition, revising the hemispherical point temperature Thp, matching the revised Thp with the initial composition.","PeriodicalId":51090,"journal":{"name":"Journal of Mining and Metallurgy Section B-Metallurgy","volume":"122 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterization and analysis on the hemispherical point temperature uncertainty problem of mold flux with volatiles\",\"authors\":\"Z. Wang, Mengmeng Ren, J. Zhao, Z. Zhang, H. Wang, A.-L. Hu, Ya-ru Cui\",\"doi\":\"10.2298/jmmb211209019w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In hemisphere point temperature (Thp) measurement of continuous casting mold flux, the evaporation of volatiles under high temperature will have a strong impact on the results. Based on the comprehensive analysis of hemisphere point method and its influencing factors, the corresponding volatile-containing mold flux and non-volatile mold flux were selected to get Thp with different heating rates. Combined with the Thp measurement and TG-DSC results, the effect of relevant factors during measuring process were analysed and the way to characterize and evaluate the effects were suggested. Furthermore, an improved method of mold flux melting point test was put forward. The results showed that for non-volatile mold flux, the temperature hysteresis has a greater effect than heat transfer delay and fractional melting. And for mold flux with volatile, the effect of evaporation is greater than other factors. Traditional hemisphere-point method is no longer suitable for the volatile mold flux. In order to get through this problem, improved methods were proposed. One is measuring Thp by traditional way, correcting the composition at the Thp, corresponding Thp with the corrected composition. Another is taking the initial composition, revising the hemispherical point temperature Thp, matching the revised Thp with the initial composition.\",\"PeriodicalId\":51090,\"journal\":{\"name\":\"Journal of Mining and Metallurgy Section B-Metallurgy\",\"volume\":\"122 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mining and Metallurgy Section B-Metallurgy\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.2298/jmmb211209019w\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mining and Metallurgy Section B-Metallurgy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.2298/jmmb211209019w","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
Characterization and analysis on the hemispherical point temperature uncertainty problem of mold flux with volatiles
In hemisphere point temperature (Thp) measurement of continuous casting mold flux, the evaporation of volatiles under high temperature will have a strong impact on the results. Based on the comprehensive analysis of hemisphere point method and its influencing factors, the corresponding volatile-containing mold flux and non-volatile mold flux were selected to get Thp with different heating rates. Combined with the Thp measurement and TG-DSC results, the effect of relevant factors during measuring process were analysed and the way to characterize and evaluate the effects were suggested. Furthermore, an improved method of mold flux melting point test was put forward. The results showed that for non-volatile mold flux, the temperature hysteresis has a greater effect than heat transfer delay and fractional melting. And for mold flux with volatile, the effect of evaporation is greater than other factors. Traditional hemisphere-point method is no longer suitable for the volatile mold flux. In order to get through this problem, improved methods were proposed. One is measuring Thp by traditional way, correcting the composition at the Thp, corresponding Thp with the corrected composition. Another is taking the initial composition, revising the hemispherical point temperature Thp, matching the revised Thp with the initial composition.
期刊介绍:
University of Belgrade, Technical Faculty in Bor, has been publishing the journal called Journal of Mining and Metallurgy since 1965 and in 1997 it was divided in two independent journals dealing with mining and metallurgy separately. Since 2009 Journal of Mining and Metallurgy, Section B: Metallurgy has been accepted in Science Citation Index Expanded.
Journal of Mining and Metallurgy, Section B: Metallurgy presents an international medium for the publication of contributions on original research which reflect the new progresses in theory and practice of metallurgy. The Journal covers the latest research in all aspects of metallurgy including hydrometallurgy, pyrometallurgy, electrometallurgy, transport phenomena, process control, solidification, mechanical working, solid state reactions, materials processing, surface treatment and relationships among processing, structure, and properties of materials.