有限环Z15上的线性码

Wen-sheng Li, Lingyu Wan, Meng-tian Yue, Wei Chen, Xuedong Zhang
{"title":"有限环Z15上的线性码","authors":"Wen-sheng Li, Lingyu Wan, Meng-tian Yue, Wei Chen, Xuedong Zhang","doi":"10.4236/alamt.2020.101001","DOIUrl":null,"url":null,"abstract":"In this paper, the structure of the non-chain ring Z15 is studied. The ideals of the ring Z15 are obtained through its non-units and the Lee weights of elements in Z15 are presented. On this basis, by the Chinese Remainder Theorem, we construct a unique expression of an element in Z15. Further, the Gray mapping from Zn15 to Z2n15 is defined and it’s shown to be distance preserved. The relationship between the minimum Lee weight and the minimum Hamming weight of the linear code over the ring Z15 is also obtained and we prove that the Gray map of the linear code over the ring Z15 is also linear.","PeriodicalId":65610,"journal":{"name":"线性代数与矩阵理论研究进展(英文)","volume":"205 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Linear Codes over the Finite Ring Z15\",\"authors\":\"Wen-sheng Li, Lingyu Wan, Meng-tian Yue, Wei Chen, Xuedong Zhang\",\"doi\":\"10.4236/alamt.2020.101001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the structure of the non-chain ring Z15 is studied. The ideals of the ring Z15 are obtained through its non-units and the Lee weights of elements in Z15 are presented. On this basis, by the Chinese Remainder Theorem, we construct a unique expression of an element in Z15. Further, the Gray mapping from Zn15 to Z2n15 is defined and it’s shown to be distance preserved. The relationship between the minimum Lee weight and the minimum Hamming weight of the linear code over the ring Z15 is also obtained and we prove that the Gray map of the linear code over the ring Z15 is also linear.\",\"PeriodicalId\":65610,\"journal\":{\"name\":\"线性代数与矩阵理论研究进展(英文)\",\"volume\":\"205 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"线性代数与矩阵理论研究进展(英文)\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.4236/alamt.2020.101001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"线性代数与矩阵理论研究进展(英文)","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.4236/alamt.2020.101001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文对非链环Z15的结构进行了研究。通过环Z15的非单元得到环Z15的理想值,并给出环Z15中元素的李氏权值。在此基础上,利用中国剩余定理,构造出Z15中某元素的唯一表达式。进一步,定义了从Zn15到Z2n15的灰度映射,并证明了它是距离保持的。得到了Z15环上线性码的最小Lee权值与最小Hamming权值之间的关系,并证明了Z15环上线性码的灰度映射也是线性的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Linear Codes over the Finite Ring Z15
In this paper, the structure of the non-chain ring Z15 is studied. The ideals of the ring Z15 are obtained through its non-units and the Lee weights of elements in Z15 are presented. On this basis, by the Chinese Remainder Theorem, we construct a unique expression of an element in Z15. Further, the Gray mapping from Zn15 to Z2n15 is defined and it’s shown to be distance preserved. The relationship between the minimum Lee weight and the minimum Hamming weight of the linear code over the ring Z15 is also obtained and we prove that the Gray map of the linear code over the ring Z15 is also linear.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
56
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信