利用粒子图像测速技术研究转速对涡轮增压器压气机喘振的影响

IF 1.8 3区 工程技术 Q3 ENGINEERING, MECHANICAL
D. Banerjee, R. Dehner, A. Selamet, Keith Miazgowicz
{"title":"利用粒子图像测速技术研究转速对涡轮增压器压气机喘振的影响","authors":"D. Banerjee, R. Dehner, A. Selamet, Keith Miazgowicz","doi":"10.1115/1.4049838","DOIUrl":null,"url":null,"abstract":"\n Stereoscopic particle image velocimetry is used to characterize the variation of the turbocharger compressor inlet velocity field as a function of rotational speed, with an emphasis on surge. While the velocity magnitudes at choke or mild surge increased with rotational speed, the velocity profiles remained qualitatively similar. The variation in deep surge flow field with shaft speed, however, was more substantial. At 80 krpm, the overall flow field was comparable at different time instances (at different points on the surge cycle): the core flow near the duct center was always directed into the impeller, whereas reversed flow occupied an annular region near the periphery in nearly all time instances. However, at 140 krpm, while the negative flow rate (cross-sectional average flow is directed out of the inducer back into the inlet duct) portion of the surge cycle was still similar to the overall surge flow field at 80 krpm, over a substantial part of the positive flow rate (cross-sectional average flow is directed into the impeller) portion of the surge cycle, there was no sign of reversed flow within the visualization domain. As the rotational speed was increased, the surge loop (obtained by combining the particle image velocimetry (PIV) and pressure transducer data) extended over a wider portion of the compressor map with higher maximum (positive) and minimum (negative) flow rates, along with higher amplitude pressure fluctuations. The mean amplitude of mass flow rate and pressure ratio fluctuations at deep surge increased in nearly a quadratic fashion with rotational speed.","PeriodicalId":54833,"journal":{"name":"Journal of Fluids Engineering-Transactions of the Asme","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of Rotational Speed on Turbocharger Compressor Surge Through Particle Image Velocimetry1\",\"authors\":\"D. Banerjee, R. Dehner, A. Selamet, Keith Miazgowicz\",\"doi\":\"10.1115/1.4049838\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Stereoscopic particle image velocimetry is used to characterize the variation of the turbocharger compressor inlet velocity field as a function of rotational speed, with an emphasis on surge. While the velocity magnitudes at choke or mild surge increased with rotational speed, the velocity profiles remained qualitatively similar. The variation in deep surge flow field with shaft speed, however, was more substantial. At 80 krpm, the overall flow field was comparable at different time instances (at different points on the surge cycle): the core flow near the duct center was always directed into the impeller, whereas reversed flow occupied an annular region near the periphery in nearly all time instances. However, at 140 krpm, while the negative flow rate (cross-sectional average flow is directed out of the inducer back into the inlet duct) portion of the surge cycle was still similar to the overall surge flow field at 80 krpm, over a substantial part of the positive flow rate (cross-sectional average flow is directed into the impeller) portion of the surge cycle, there was no sign of reversed flow within the visualization domain. As the rotational speed was increased, the surge loop (obtained by combining the particle image velocimetry (PIV) and pressure transducer data) extended over a wider portion of the compressor map with higher maximum (positive) and minimum (negative) flow rates, along with higher amplitude pressure fluctuations. The mean amplitude of mass flow rate and pressure ratio fluctuations at deep surge increased in nearly a quadratic fashion with rotational speed.\",\"PeriodicalId\":54833,\"journal\":{\"name\":\"Journal of Fluids Engineering-Transactions of the Asme\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2021-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Fluids Engineering-Transactions of the Asme\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4049838\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluids Engineering-Transactions of the Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4049838","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

采用立体粒子图像测速技术对涡轮增压器压气机入口速度场随转速的变化进行了表征,重点研究了喘振问题。在扼流或轻微喘振时,速度大小随转速的增加而增加,但速度分布在性质上保持相似。而深喘振流场随轴速的变化更为显著。在80krpm时,不同时间点的整体流场具有可比性(在涌动周期的不同时间点):靠近风道中心的核心流始终指向叶轮,而几乎所有时间点的反向流都占据靠近外围的环形区域。然而,在140 krpm时,虽然喘振循环的负流量(横截面平均流量从诱导器流出回到进口导管)部分仍然与80 krpm时的整体喘振流场相似,但在喘振循环的正流量(横截面平均流量流入叶轮)部分的很大一部分,在可视化域中没有出现反向流动的迹象。随着转速的增加,喘振回路(通过结合颗粒图像测速(PIV)和压力传感器数据获得)扩展到压缩机图的更大部分,具有更高的最大(正)和最小(负)流量,以及更高的振幅压力波动。深喘振时质量流量和压力比波动的平均幅值随转速的增加几乎呈二次型增长。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Impact of Rotational Speed on Turbocharger Compressor Surge Through Particle Image Velocimetry1
Stereoscopic particle image velocimetry is used to characterize the variation of the turbocharger compressor inlet velocity field as a function of rotational speed, with an emphasis on surge. While the velocity magnitudes at choke or mild surge increased with rotational speed, the velocity profiles remained qualitatively similar. The variation in deep surge flow field with shaft speed, however, was more substantial. At 80 krpm, the overall flow field was comparable at different time instances (at different points on the surge cycle): the core flow near the duct center was always directed into the impeller, whereas reversed flow occupied an annular region near the periphery in nearly all time instances. However, at 140 krpm, while the negative flow rate (cross-sectional average flow is directed out of the inducer back into the inlet duct) portion of the surge cycle was still similar to the overall surge flow field at 80 krpm, over a substantial part of the positive flow rate (cross-sectional average flow is directed into the impeller) portion of the surge cycle, there was no sign of reversed flow within the visualization domain. As the rotational speed was increased, the surge loop (obtained by combining the particle image velocimetry (PIV) and pressure transducer data) extended over a wider portion of the compressor map with higher maximum (positive) and minimum (negative) flow rates, along with higher amplitude pressure fluctuations. The mean amplitude of mass flow rate and pressure ratio fluctuations at deep surge increased in nearly a quadratic fashion with rotational speed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.60
自引率
10.00%
发文量
165
审稿时长
5.0 months
期刊介绍: Multiphase flows; Pumps; Aerodynamics; Boundary layers; Bubbly flows; Cavitation; Compressible flows; Convective heat/mass transfer as it is affected by fluid flow; Duct and pipe flows; Free shear layers; Flows in biological systems; Fluid-structure interaction; Fluid transients and wave motion; Jets; Naval hydrodynamics; Sprays; Stability and transition; Turbulence wakes microfluidics and other fundamental/applied fluid mechanical phenomena and processes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信