公平的医疗配给以最大限度地提高动态效用

A. Ganesh, Prajakta Nimbhorkar, Pratik Ghosal, HV VishwaPrakash
{"title":"公平的医疗配给以最大限度地提高动态效用","authors":"A. Ganesh, Prajakta Nimbhorkar, Pratik Ghosal, HV VishwaPrakash","doi":"10.48550/arXiv.2303.11053","DOIUrl":null,"url":null,"abstract":"Allocation of scarce healthcare resources under limited logistic and infrastructural facilities is a major issue in the modern society. We consider the problem of allocation of healthcare resources like vaccines to people or hospital beds to patients in an online manner. Our model takes into account the arrival of resources on a day-to-day basis, different categories of agents, the possible unavailability of agents on certain days, and the utility associated with each allotment as well as its variation over time. We propose a model where priorities for various categories are modelled in terms of utilities of agents. We give online and offline algorithms to compute an allocation that respects eligibility of agents into different categories, and incentivizes agents not to hide their eligibility for some category. The offline algorithm gives an optimal allocation while the on-line algorithm gives an approximation to the optimal allocation in terms of total utility. Our algorithms are efficient, and maintain fairness among different categories of agents. Our models have applications in other areas like refugee settlement and visa allocation. We evaluate the performance of our algorithms on real-life and synthetic datasets. The experimental results show that the online algorithm is fast and performs better than the given theoretical bound in terms of total utility. Moreover, the experimental results confirm that our utility-based model correctly captures the priorities of categories","PeriodicalId":91995,"journal":{"name":"Advances in Knowledge Discovery and Data Mining : 21st Pacific-Asia Conference, PAKDD 2017, Jeju, South Korea, May 23-26, 2017, Proceedings. Part I. Pacific-Asia Conference on Knowledge Discovery and Data Mining (21st : 2017 : Cheju Isl...","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fair Healthcare Rationing to Maximize Dynamic Utilities\",\"authors\":\"A. Ganesh, Prajakta Nimbhorkar, Pratik Ghosal, HV VishwaPrakash\",\"doi\":\"10.48550/arXiv.2303.11053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Allocation of scarce healthcare resources under limited logistic and infrastructural facilities is a major issue in the modern society. We consider the problem of allocation of healthcare resources like vaccines to people or hospital beds to patients in an online manner. Our model takes into account the arrival of resources on a day-to-day basis, different categories of agents, the possible unavailability of agents on certain days, and the utility associated with each allotment as well as its variation over time. We propose a model where priorities for various categories are modelled in terms of utilities of agents. We give online and offline algorithms to compute an allocation that respects eligibility of agents into different categories, and incentivizes agents not to hide their eligibility for some category. The offline algorithm gives an optimal allocation while the on-line algorithm gives an approximation to the optimal allocation in terms of total utility. Our algorithms are efficient, and maintain fairness among different categories of agents. Our models have applications in other areas like refugee settlement and visa allocation. We evaluate the performance of our algorithms on real-life and synthetic datasets. The experimental results show that the online algorithm is fast and performs better than the given theoretical bound in terms of total utility. Moreover, the experimental results confirm that our utility-based model correctly captures the priorities of categories\",\"PeriodicalId\":91995,\"journal\":{\"name\":\"Advances in Knowledge Discovery and Data Mining : 21st Pacific-Asia Conference, PAKDD 2017, Jeju, South Korea, May 23-26, 2017, Proceedings. Part I. Pacific-Asia Conference on Knowledge Discovery and Data Mining (21st : 2017 : Cheju Isl...\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Knowledge Discovery and Data Mining : 21st Pacific-Asia Conference, PAKDD 2017, Jeju, South Korea, May 23-26, 2017, Proceedings. Part I. Pacific-Asia Conference on Knowledge Discovery and Data Mining (21st : 2017 : Cheju Isl...\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2303.11053\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Knowledge Discovery and Data Mining : 21st Pacific-Asia Conference, PAKDD 2017, Jeju, South Korea, May 23-26, 2017, Proceedings. Part I. Pacific-Asia Conference on Knowledge Discovery and Data Mining (21st : 2017 : Cheju Isl...","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2303.11053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在有限的物流和基础设施条件下,如何配置稀缺的医疗资源是现代社会的一个重大问题。我们考虑以在线方式将疫苗等医疗资源分配给人们或将病床分配给患者的问题。我们的模型考虑了每天到达的资源、不同类别的代理、某些天代理可能不可用的情况,以及与每个分配相关的效用及其随时间的变化。我们提出了一个模型,其中根据代理的效用对各种类别的优先级进行建模。我们给出了在线和离线算法来计算分配,以尊重代理进入不同类别的资格,并激励代理不隐藏他们对某些类别的资格。离线算法给出最优分配,在线算法给出最优分配的近似总效用。我们的算法是高效的,并保持不同类别的代理之间的公平性。我们的模型在其他领域也有应用,比如难民安置和签证分配。我们评估了我们的算法在现实生活和合成数据集上的性能。实验结果表明,在线算法速度快,在总效用方面优于给定的理论边界。此外,实验结果证实了我们基于效用的模型正确地捕获了类别的优先级
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fair Healthcare Rationing to Maximize Dynamic Utilities
Allocation of scarce healthcare resources under limited logistic and infrastructural facilities is a major issue in the modern society. We consider the problem of allocation of healthcare resources like vaccines to people or hospital beds to patients in an online manner. Our model takes into account the arrival of resources on a day-to-day basis, different categories of agents, the possible unavailability of agents on certain days, and the utility associated with each allotment as well as its variation over time. We propose a model where priorities for various categories are modelled in terms of utilities of agents. We give online and offline algorithms to compute an allocation that respects eligibility of agents into different categories, and incentivizes agents not to hide their eligibility for some category. The offline algorithm gives an optimal allocation while the on-line algorithm gives an approximation to the optimal allocation in terms of total utility. Our algorithms are efficient, and maintain fairness among different categories of agents. Our models have applications in other areas like refugee settlement and visa allocation. We evaluate the performance of our algorithms on real-life and synthetic datasets. The experimental results show that the online algorithm is fast and performs better than the given theoretical bound in terms of total utility. Moreover, the experimental results confirm that our utility-based model correctly captures the priorities of categories
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信