Lp拟范数最小化

M. Ashour, C. Lagoa, N. S. Aybat
{"title":"Lp拟范数最小化","authors":"M. Ashour, C. Lagoa, N. S. Aybat","doi":"10.1109/IEEECONF44664.2019.9048923","DOIUrl":null,"url":null,"abstract":"The ℓp (0 < p < 1) quasi-norm is used as a sparsity-inducing function, and has applications in diverse areas, e.g., statistics, machine learning, and signal processing. This paper proposes a heuristic based on a two-block ADMM algorithm for tackling ℓp quasi-norm minimization problems. For p = s/q < 1, s, q ∈ ℤ +, the proposed algorithm requires solving for the roots of a scalar degree 2q polynomial as opposed to applying a soft thresholding operator in the case of ℓ1. We show numerical results for two example applications, sparse signal reconstruction from few noisy measurements and spam email classification using support vector machines. Our method obtains significantly sparser solutions than those obtained by ℓ1 minimization while achieving similar level of measurement fitting in signal reconstruction, and training and test set accuracy in classification.","PeriodicalId":6684,"journal":{"name":"2019 53rd Asilomar Conference on Signals, Systems, and Computers","volume":"604 1","pages":"726-730"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Lp Quasi-norm Minimization\",\"authors\":\"M. Ashour, C. Lagoa, N. S. Aybat\",\"doi\":\"10.1109/IEEECONF44664.2019.9048923\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The ℓp (0 < p < 1) quasi-norm is used as a sparsity-inducing function, and has applications in diverse areas, e.g., statistics, machine learning, and signal processing. This paper proposes a heuristic based on a two-block ADMM algorithm for tackling ℓp quasi-norm minimization problems. For p = s/q < 1, s, q ∈ ℤ +, the proposed algorithm requires solving for the roots of a scalar degree 2q polynomial as opposed to applying a soft thresholding operator in the case of ℓ1. We show numerical results for two example applications, sparse signal reconstruction from few noisy measurements and spam email classification using support vector machines. Our method obtains significantly sparser solutions than those obtained by ℓ1 minimization while achieving similar level of measurement fitting in signal reconstruction, and training and test set accuracy in classification.\",\"PeriodicalId\":6684,\"journal\":{\"name\":\"2019 53rd Asilomar Conference on Signals, Systems, and Computers\",\"volume\":\"604 1\",\"pages\":\"726-730\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 53rd Asilomar Conference on Signals, Systems, and Computers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IEEECONF44664.2019.9048923\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 53rd Asilomar Conference on Signals, Systems, and Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEEECONF44664.2019.9048923","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

p (0 < p < 1)拟范数被用作稀疏性诱导函数,并且在不同的领域有应用,例如,统计学,机器学习和信号处理。本文提出了一种基于两块ADMM算法的启发式算法,用于求解拟范数最小化问题。对于p = s/q < 1, s, q∈0 +,所提出的算法需要求解2q次标量多项式的根,而不是在1的情况下应用软阈值算子。我们展示了两个示例应用的数值结果,即基于少量噪声测量的稀疏信号重建和使用支持向量机的垃圾邮件分类。我们的方法得到的解比最小化方法得到的解更稀疏,同时在信号重建方面达到了相似的测量拟合水平,在分类方面达到了训练集和测试集的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lp Quasi-norm Minimization
The ℓp (0 < p < 1) quasi-norm is used as a sparsity-inducing function, and has applications in diverse areas, e.g., statistics, machine learning, and signal processing. This paper proposes a heuristic based on a two-block ADMM algorithm for tackling ℓp quasi-norm minimization problems. For p = s/q < 1, s, q ∈ ℤ +, the proposed algorithm requires solving for the roots of a scalar degree 2q polynomial as opposed to applying a soft thresholding operator in the case of ℓ1. We show numerical results for two example applications, sparse signal reconstruction from few noisy measurements and spam email classification using support vector machines. Our method obtains significantly sparser solutions than those obtained by ℓ1 minimization while achieving similar level of measurement fitting in signal reconstruction, and training and test set accuracy in classification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信