大型FETI-DP混合簇和巨大三维标量问题的Schur补谱界

IF 3.8 2区 数学 Q1 MATHEMATICS
Z. Dostál, T. Brzobohatý, O. Vlach
{"title":"大型FETI-DP混合簇和巨大三维标量问题的Schur补谱界","authors":"Z. Dostál, T. Brzobohatý, O. Vlach","doi":"10.1515/JNMA-2020-0048","DOIUrl":null,"url":null,"abstract":"Abstract Bounds on the spectrum of Schur complements of subdomain stiffness matrices with respect to the interior variables are key ingredients of the convergence analysis of FETI (finite element tearing and interconnecting) based domain decomposition methods. Here we give bounds on the regular condition number of Schur complements of ‘floating’ clusters arising from the discretization of 3D Laplacian on a cube decomposed into cube subdomains. The results show that the condition number of the cluster defined on a fixed domain decomposed into m × m × m cube subdomains connected by face and optionally edge averages increases proportionally to m. The estimates support scalability of unpreconditioned H-FETI-DP (hybrid FETI dual-primal) method. Though the research is most important for the solution of variational inequalities, the results of numerical experiments indicate that unpreconditioned H-FETI-DP with large clusters can be useful also for the solution of huge linear problems.","PeriodicalId":50109,"journal":{"name":"Journal of Numerical Mathematics","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2021-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Schur complement spectral bounds for large hybrid FETI-DP clusters and huge three-dimensional scalar problems\",\"authors\":\"Z. Dostál, T. Brzobohatý, O. Vlach\",\"doi\":\"10.1515/JNMA-2020-0048\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Bounds on the spectrum of Schur complements of subdomain stiffness matrices with respect to the interior variables are key ingredients of the convergence analysis of FETI (finite element tearing and interconnecting) based domain decomposition methods. Here we give bounds on the regular condition number of Schur complements of ‘floating’ clusters arising from the discretization of 3D Laplacian on a cube decomposed into cube subdomains. The results show that the condition number of the cluster defined on a fixed domain decomposed into m × m × m cube subdomains connected by face and optionally edge averages increases proportionally to m. The estimates support scalability of unpreconditioned H-FETI-DP (hybrid FETI dual-primal) method. Though the research is most important for the solution of variational inequalities, the results of numerical experiments indicate that unpreconditioned H-FETI-DP with large clusters can be useful also for the solution of huge linear problems.\",\"PeriodicalId\":50109,\"journal\":{\"name\":\"Journal of Numerical Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2021-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Numerical Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/JNMA-2020-0048\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Numerical Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/JNMA-2020-0048","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

摘要

子域刚度矩阵相对于内部变量的Schur补谱的界是基于FETI(有限元撕裂互连)域分解方法收敛性分析的关键因素。本文给出了三维拉普拉斯离散在分解成立方体子域的立方体上产生的“浮动”簇的Schur补的正则条件数的界。结果表明,在固定域上定义的聚类的条件数分解为m × m × m立方子域,这些子域由面和可选边平均连接,条件数随m成比例地增加。虽然该研究主要针对变分不等式的求解,但数值实验结果表明,具有大簇的无预条件H-FETI-DP也可用于求解大型线性问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Schur complement spectral bounds for large hybrid FETI-DP clusters and huge three-dimensional scalar problems
Abstract Bounds on the spectrum of Schur complements of subdomain stiffness matrices with respect to the interior variables are key ingredients of the convergence analysis of FETI (finite element tearing and interconnecting) based domain decomposition methods. Here we give bounds on the regular condition number of Schur complements of ‘floating’ clusters arising from the discretization of 3D Laplacian on a cube decomposed into cube subdomains. The results show that the condition number of the cluster defined on a fixed domain decomposed into m × m × m cube subdomains connected by face and optionally edge averages increases proportionally to m. The estimates support scalability of unpreconditioned H-FETI-DP (hybrid FETI dual-primal) method. Though the research is most important for the solution of variational inequalities, the results of numerical experiments indicate that unpreconditioned H-FETI-DP with large clusters can be useful also for the solution of huge linear problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.90
自引率
3.30%
发文量
17
审稿时长
>12 weeks
期刊介绍: The Journal of Numerical Mathematics (formerly East-West Journal of Numerical Mathematics) contains high-quality papers featuring contemporary research in all areas of Numerical Mathematics. This includes the development, analysis, and implementation of new and innovative methods in Numerical Linear Algebra, Numerical Analysis, Optimal Control/Optimization, and Scientific Computing. The journal will also publish applications-oriented papers with significant mathematical content in computational fluid dynamics and other areas of computational engineering, finance, and life sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信