基于大数据集的最优设计子抽样

IF 2.6 2区 工程技术 Q2 ENGINEERING, INDUSTRIAL
L. Deldossi, C. Tommasi
{"title":"基于大数据集的最优设计子抽样","authors":"L. Deldossi, C. Tommasi","doi":"10.1080/00224065.2021.1889418","DOIUrl":null,"url":null,"abstract":"Abstract Big Data are huge amounts of digital information that rarely result from properly planned surveys; as a consequence they often contain redundant observations. When the aim is to answer particular questions of interest, we suggest selecting a subsample of units that contains the majority of the information to achieve this goal. Selection methods driven by the theory of optimal design incorporate the inferential purposes and thus perform better than standard sampling schemes.","PeriodicalId":54769,"journal":{"name":"Journal of Quality Technology","volume":"45 1","pages":"93 - 101"},"PeriodicalIF":2.6000,"publicationDate":"2021-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Optimal design subsampling from Big Datasets\",\"authors\":\"L. Deldossi, C. Tommasi\",\"doi\":\"10.1080/00224065.2021.1889418\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Big Data are huge amounts of digital information that rarely result from properly planned surveys; as a consequence they often contain redundant observations. When the aim is to answer particular questions of interest, we suggest selecting a subsample of units that contains the majority of the information to achieve this goal. Selection methods driven by the theory of optimal design incorporate the inferential purposes and thus perform better than standard sampling schemes.\",\"PeriodicalId\":54769,\"journal\":{\"name\":\"Journal of Quality Technology\",\"volume\":\"45 1\",\"pages\":\"93 - 101\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2021-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Quality Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/00224065.2021.1889418\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Quality Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/00224065.2021.1889418","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 14

摘要

大数据是大量的数字信息,很少来自适当计划的调查;因此,它们常常包含多余的观察结果。当目标是回答感兴趣的特定问题时,我们建议选择包含大部分信息的单元子样本来实现这一目标。由最优设计理论驱动的选择方法结合了推理目的,因此比标准抽样方案执行得更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal design subsampling from Big Datasets
Abstract Big Data are huge amounts of digital information that rarely result from properly planned surveys; as a consequence they often contain redundant observations. When the aim is to answer particular questions of interest, we suggest selecting a subsample of units that contains the majority of the information to achieve this goal. Selection methods driven by the theory of optimal design incorporate the inferential purposes and thus perform better than standard sampling schemes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Quality Technology
Journal of Quality Technology 管理科学-工程:工业
CiteScore
5.20
自引率
4.00%
发文量
23
审稿时长
>12 weeks
期刊介绍: The objective of Journal of Quality Technology is to contribute to the technical advancement of the field of quality technology by publishing papers that emphasize the practical applicability of new techniques, instructive examples of the operation of existing techniques and results of historical researches. Expository, review, and tutorial papers are also acceptable if they are written in a style suitable for practicing engineers. Sample our Mathematics & Statistics journals, sign in here to start your FREE access for 14 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信