S. Mukherjee, Shanta Chakrabarty, P. Mishra, P. Chaudhuri
{"title":"水基Al2O3和TiO2纳米流体的稳定性和沉降特性","authors":"S. Mukherjee, Shanta Chakrabarty, P. Mishra, P. Chaudhuri","doi":"10.1177/23977914221127735","DOIUrl":null,"url":null,"abstract":"Nanofluids are regarded as promising heat transfer fluid due to their ultrafast cooling capability. However, stability analysis of nanofluids is very critical before its application in heat transfer .The present paper reports about an investigation on the stability of water-based Al2O3 and TiO2 nanofluids at ambient temperature. Nanoparticles, namely Al2O3 and TiO2 at different concentrations of 1, 0.5, 0.1, 0.05, and 0.01 wt.% respectively were directly dispersed in water without adding any dispersant and placed in a static container to observe gravitation settling. Change of sedimentation height with respect to time was measured using the sedimentation photograph capturing method. DLS (Dynamic Light Scattering) and zeta potential analysis were also executed to examine the stability of nanofluids. The results show that the visualization method, DLS and zeta potential analysis are in good correspondence to each other. Sedimentation velocity increases with an increase in nanoparticle concentration and aging. Brownian motion of nanoparticles resist the sedimentation in nanofluids. It is observed that TiO2nanofluid is more stable as compared to Al2O3 nanofluid due to its smaller particle size. Finally authors recommend smaller particle size, optimized sonication time, low nanoparticle concentration and use of surfactant to obtain better dispersion stability of nanofluids","PeriodicalId":44789,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers Part N-Journal of Nanomaterials Nanoengineering and Nanosystems","volume":"118 1","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2022-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Stability and sedimentation characteristics of water based Al2O3 and TiO2 nanofluids\",\"authors\":\"S. Mukherjee, Shanta Chakrabarty, P. Mishra, P. Chaudhuri\",\"doi\":\"10.1177/23977914221127735\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nanofluids are regarded as promising heat transfer fluid due to their ultrafast cooling capability. However, stability analysis of nanofluids is very critical before its application in heat transfer .The present paper reports about an investigation on the stability of water-based Al2O3 and TiO2 nanofluids at ambient temperature. Nanoparticles, namely Al2O3 and TiO2 at different concentrations of 1, 0.5, 0.1, 0.05, and 0.01 wt.% respectively were directly dispersed in water without adding any dispersant and placed in a static container to observe gravitation settling. Change of sedimentation height with respect to time was measured using the sedimentation photograph capturing method. DLS (Dynamic Light Scattering) and zeta potential analysis were also executed to examine the stability of nanofluids. The results show that the visualization method, DLS and zeta potential analysis are in good correspondence to each other. Sedimentation velocity increases with an increase in nanoparticle concentration and aging. Brownian motion of nanoparticles resist the sedimentation in nanofluids. It is observed that TiO2nanofluid is more stable as compared to Al2O3 nanofluid due to its smaller particle size. Finally authors recommend smaller particle size, optimized sonication time, low nanoparticle concentration and use of surfactant to obtain better dispersion stability of nanofluids\",\"PeriodicalId\":44789,\"journal\":{\"name\":\"Proceedings of the Institution of Mechanical Engineers Part N-Journal of Nanomaterials Nanoengineering and Nanosystems\",\"volume\":\"118 1\",\"pages\":\"\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2022-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Mechanical Engineers Part N-Journal of Nanomaterials Nanoengineering and Nanosystems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/23977914221127735\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers Part N-Journal of Nanomaterials Nanoengineering and Nanosystems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/23977914221127735","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
Stability and sedimentation characteristics of water based Al2O3 and TiO2 nanofluids
Nanofluids are regarded as promising heat transfer fluid due to their ultrafast cooling capability. However, stability analysis of nanofluids is very critical before its application in heat transfer .The present paper reports about an investigation on the stability of water-based Al2O3 and TiO2 nanofluids at ambient temperature. Nanoparticles, namely Al2O3 and TiO2 at different concentrations of 1, 0.5, 0.1, 0.05, and 0.01 wt.% respectively were directly dispersed in water without adding any dispersant and placed in a static container to observe gravitation settling. Change of sedimentation height with respect to time was measured using the sedimentation photograph capturing method. DLS (Dynamic Light Scattering) and zeta potential analysis were also executed to examine the stability of nanofluids. The results show that the visualization method, DLS and zeta potential analysis are in good correspondence to each other. Sedimentation velocity increases with an increase in nanoparticle concentration and aging. Brownian motion of nanoparticles resist the sedimentation in nanofluids. It is observed that TiO2nanofluid is more stable as compared to Al2O3 nanofluid due to its smaller particle size. Finally authors recommend smaller particle size, optimized sonication time, low nanoparticle concentration and use of surfactant to obtain better dispersion stability of nanofluids
期刊介绍:
Proceedings of the Institution of Mechanical Engineers Part N-Journal of Nanomaterials Nanoengineering and Nanosystems is a peer-reviewed scientific journal published since 2004 by SAGE Publications on behalf of the Institution of Mechanical Engineers. The journal focuses on research in the field of nanoengineering, nanoscience and nanotechnology and aims to publish high quality academic papers in this field. In addition, the journal is indexed in several reputable academic databases and abstracting services, including Scopus, Compendex, and CSA's Advanced Polymers Abstracts, Composites Industry Abstracts, and Earthquake Engineering Abstracts.