膨胀对称的轮廓积分的独立性

Pascal Sansen , Philippe Dufrénoy , Dieter Weichert
{"title":"膨胀对称的轮廓积分的独立性","authors":"Pascal Sansen ,&nbsp;Philippe Dufrénoy ,&nbsp;Dieter Weichert","doi":"10.1016/S1287-4620(00)87503-1","DOIUrl":null,"url":null,"abstract":"<div><p>Knowles and Sternberg gave the definition of the M integral relative to the dilatational symmetry in the elasticity domain. The path domain independence of this integral correspond to some very restricted applications. We propose to enlarge the field of application in defining for every type of transformation a modified path domain independent M integral. The demonstration that this conservation law is associate to the transformation is considered.</p></div>","PeriodicalId":100303,"journal":{"name":"Comptes Rendus de l'Académie des Sciences - Series IIB - Mechanics-Physics-Astronomy","volume":"327 14","pages":"Pages 1351-1354"},"PeriodicalIF":0.0000,"publicationDate":"1999-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1287-4620(00)87503-1","citationCount":"3","resultStr":"{\"title\":\"Indépendance de l'intégrale de contour pour une symétrie de dilatation\",\"authors\":\"Pascal Sansen ,&nbsp;Philippe Dufrénoy ,&nbsp;Dieter Weichert\",\"doi\":\"10.1016/S1287-4620(00)87503-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Knowles and Sternberg gave the definition of the M integral relative to the dilatational symmetry in the elasticity domain. The path domain independence of this integral correspond to some very restricted applications. We propose to enlarge the field of application in defining for every type of transformation a modified path domain independent M integral. The demonstration that this conservation law is associate to the transformation is considered.</p></div>\",\"PeriodicalId\":100303,\"journal\":{\"name\":\"Comptes Rendus de l'Académie des Sciences - Series IIB - Mechanics-Physics-Astronomy\",\"volume\":\"327 14\",\"pages\":\"Pages 1351-1354\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S1287-4620(00)87503-1\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comptes Rendus de l'Académie des Sciences - Series IIB - Mechanics-Physics-Astronomy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1287462000875031\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comptes Rendus de l'Académie des Sciences - Series IIB - Mechanics-Physics-Astronomy","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1287462000875031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

Knowles和Sternberg给出了在弹性域中相对于扩张对称的M积分的定义。这个积分的路径域无关性适用于一些非常有限的应用。对于每一类变换,我们提出了一个修正路径无关域的M积分的定义,以扩大其应用范围。考虑了这一守恒定律与变换有关的证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Indépendance de l'intégrale de contour pour une symétrie de dilatation

Knowles and Sternberg gave the definition of the M integral relative to the dilatational symmetry in the elasticity domain. The path domain independence of this integral correspond to some very restricted applications. We propose to enlarge the field of application in defining for every type of transformation a modified path domain independent M integral. The demonstration that this conservation law is associate to the transformation is considered.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信