快速牛顿活跃外观模型

Jean Kossaifi, Georgios Tzimiropoulos, M. Pantic
{"title":"快速牛顿活跃外观模型","authors":"Jean Kossaifi, Georgios Tzimiropoulos, M. Pantic","doi":"10.1109/ICIP.2014.7025284","DOIUrl":null,"url":null,"abstract":"Active Appearance Models (AAMs) are statistical models of shape and appearance widely used in computer vision to detect landmarks on objects like faces. Fitting an AAM to a new image can be formulated as a non-linear least-squares problem which is typically solved using iterative methods. Owing to its efficiency, Gauss-Newton optimization has been the standard choice over more sophisticated approaches like Newton. In this paper, we show that the AAM problem has structure which can be used to solve efficiently the original Newton problem without any approximations. We then make connections to the original Gauss-Newton algorithm and study experimentally the effect of the additional terms introduced by the Newton formulation on both fitting accuracy and convergence. Based on our derivations, we also propose a combined Newton and Gauss-Newton method which achieves promising fitting and convergence performance. Our findings are validated on two challenging in-the-wild data sets.","PeriodicalId":6856,"journal":{"name":"2014 IEEE International Conference on Image Processing (ICIP)","volume":"107 1","pages":"1420-1424"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Fast Newton active appearance models\",\"authors\":\"Jean Kossaifi, Georgios Tzimiropoulos, M. Pantic\",\"doi\":\"10.1109/ICIP.2014.7025284\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Active Appearance Models (AAMs) are statistical models of shape and appearance widely used in computer vision to detect landmarks on objects like faces. Fitting an AAM to a new image can be formulated as a non-linear least-squares problem which is typically solved using iterative methods. Owing to its efficiency, Gauss-Newton optimization has been the standard choice over more sophisticated approaches like Newton. In this paper, we show that the AAM problem has structure which can be used to solve efficiently the original Newton problem without any approximations. We then make connections to the original Gauss-Newton algorithm and study experimentally the effect of the additional terms introduced by the Newton formulation on both fitting accuracy and convergence. Based on our derivations, we also propose a combined Newton and Gauss-Newton method which achieves promising fitting and convergence performance. Our findings are validated on two challenging in-the-wild data sets.\",\"PeriodicalId\":6856,\"journal\":{\"name\":\"2014 IEEE International Conference on Image Processing (ICIP)\",\"volume\":\"107 1\",\"pages\":\"1420-1424\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Conference on Image Processing (ICIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP.2014.7025284\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2014.7025284","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

主动外观模型(AAMs)是一种广泛应用于计算机视觉的形状和外观统计模型,用于检测人脸等物体上的标志。将AAM拟合到新图像可以表述为非线性最小二乘问题,通常使用迭代方法求解。由于其效率,高斯-牛顿优化已经成为比牛顿等更复杂的方法更标准的选择。在本文中,我们证明了AAM问题具有不需要任何近似就能有效求解原牛顿问题的结构。然后,我们与原始的高斯-牛顿算法建立联系,并实验研究了牛顿公式引入的附加项对拟合精度和收敛性的影响。在推导的基础上,我们还提出了一种牛顿和高斯-牛顿相结合的方法,该方法具有良好的拟合和收敛性能。我们的发现在两个具有挑战性的野外数据集上得到了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fast Newton active appearance models
Active Appearance Models (AAMs) are statistical models of shape and appearance widely used in computer vision to detect landmarks on objects like faces. Fitting an AAM to a new image can be formulated as a non-linear least-squares problem which is typically solved using iterative methods. Owing to its efficiency, Gauss-Newton optimization has been the standard choice over more sophisticated approaches like Newton. In this paper, we show that the AAM problem has structure which can be used to solve efficiently the original Newton problem without any approximations. We then make connections to the original Gauss-Newton algorithm and study experimentally the effect of the additional terms introduced by the Newton formulation on both fitting accuracy and convergence. Based on our derivations, we also propose a combined Newton and Gauss-Newton method which achieves promising fitting and convergence performance. Our findings are validated on two challenging in-the-wild data sets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信