{"title":"吸引流形附近的非局部相互作用方程","authors":"F. Patacchini, Dejan Slepvcev","doi":"10.3934/dcds.2021142","DOIUrl":null,"url":null,"abstract":"<p style='text-indent:20px;'>We study the approximation of the nonlocal-interaction equation restricted to a compact manifold <inline-formula><tex-math id=\"M1\">\\begin{document}$ {\\mathcal{M}} $\\end{document}</tex-math></inline-formula> embedded in <inline-formula><tex-math id=\"M2\">\\begin{document}$ {\\mathbb{R}}^d $\\end{document}</tex-math></inline-formula>, and more generally compact sets with positive reach (i.e. prox-regular sets). We show that the equation on <inline-formula><tex-math id=\"M3\">\\begin{document}$ {\\mathcal{M}} $\\end{document}</tex-math></inline-formula> can be approximated by the classical nonlocal-interaction equation on <inline-formula><tex-math id=\"M4\">\\begin{document}$ {\\mathbb{R}}^d $\\end{document}</tex-math></inline-formula> by adding an external potential which strongly attracts to <inline-formula><tex-math id=\"M5\">\\begin{document}$ {\\mathcal{M}} $\\end{document}</tex-math></inline-formula>. The proof relies on the Sandier–Serfaty approach [<xref ref-type=\"bibr\" rid=\"b23\">23</xref>,<xref ref-type=\"bibr\" rid=\"b24\">24</xref>] to the <inline-formula><tex-math id=\"M6\">\\begin{document}$ \\Gamma $\\end{document}</tex-math></inline-formula>-convergence of gradient flows. As a by-product, we recover well-posedness for the nonlocal-interaction equation on <inline-formula><tex-math id=\"M7\">\\begin{document}$ {\\mathcal{M}} $\\end{document}</tex-math></inline-formula>, which was shown [<xref ref-type=\"bibr\" rid=\"b10\">10</xref>]. We also provide an another approximation to the interaction equation on <inline-formula><tex-math id=\"M8\">\\begin{document}$ {\\mathcal{M}} $\\end{document}</tex-math></inline-formula>, based on iterating approximately solving an interaction equation on <inline-formula><tex-math id=\"M9\">\\begin{document}$ {\\mathbb{R}}^d $\\end{document}</tex-math></inline-formula> and projecting to <inline-formula><tex-math id=\"M10\">\\begin{document}$ {\\mathcal{M}} $\\end{document}</tex-math></inline-formula>. We show convergence of this scheme, together with an estimate on the rate of convergence. Finally, we conduct numerical experiments, for both the attractive-potential-based and the projection-based approaches, that highlight the effects of the geometry on the dynamics.</p>","PeriodicalId":11254,"journal":{"name":"Discrete & Continuous Dynamical Systems - S","volume":"27 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"The nonlocal-interaction equation near attracting manifolds\",\"authors\":\"F. Patacchini, Dejan Slepvcev\",\"doi\":\"10.3934/dcds.2021142\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p style='text-indent:20px;'>We study the approximation of the nonlocal-interaction equation restricted to a compact manifold <inline-formula><tex-math id=\\\"M1\\\">\\\\begin{document}$ {\\\\mathcal{M}} $\\\\end{document}</tex-math></inline-formula> embedded in <inline-formula><tex-math id=\\\"M2\\\">\\\\begin{document}$ {\\\\mathbb{R}}^d $\\\\end{document}</tex-math></inline-formula>, and more generally compact sets with positive reach (i.e. prox-regular sets). We show that the equation on <inline-formula><tex-math id=\\\"M3\\\">\\\\begin{document}$ {\\\\mathcal{M}} $\\\\end{document}</tex-math></inline-formula> can be approximated by the classical nonlocal-interaction equation on <inline-formula><tex-math id=\\\"M4\\\">\\\\begin{document}$ {\\\\mathbb{R}}^d $\\\\end{document}</tex-math></inline-formula> by adding an external potential which strongly attracts to <inline-formula><tex-math id=\\\"M5\\\">\\\\begin{document}$ {\\\\mathcal{M}} $\\\\end{document}</tex-math></inline-formula>. The proof relies on the Sandier–Serfaty approach [<xref ref-type=\\\"bibr\\\" rid=\\\"b23\\\">23</xref>,<xref ref-type=\\\"bibr\\\" rid=\\\"b24\\\">24</xref>] to the <inline-formula><tex-math id=\\\"M6\\\">\\\\begin{document}$ \\\\Gamma $\\\\end{document}</tex-math></inline-formula>-convergence of gradient flows. As a by-product, we recover well-posedness for the nonlocal-interaction equation on <inline-formula><tex-math id=\\\"M7\\\">\\\\begin{document}$ {\\\\mathcal{M}} $\\\\end{document}</tex-math></inline-formula>, which was shown [<xref ref-type=\\\"bibr\\\" rid=\\\"b10\\\">10</xref>]. We also provide an another approximation to the interaction equation on <inline-formula><tex-math id=\\\"M8\\\">\\\\begin{document}$ {\\\\mathcal{M}} $\\\\end{document}</tex-math></inline-formula>, based on iterating approximately solving an interaction equation on <inline-formula><tex-math id=\\\"M9\\\">\\\\begin{document}$ {\\\\mathbb{R}}^d $\\\\end{document}</tex-math></inline-formula> and projecting to <inline-formula><tex-math id=\\\"M10\\\">\\\\begin{document}$ {\\\\mathcal{M}} $\\\\end{document}</tex-math></inline-formula>. We show convergence of this scheme, together with an estimate on the rate of convergence. Finally, we conduct numerical experiments, for both the attractive-potential-based and the projection-based approaches, that highlight the effects of the geometry on the dynamics.</p>\",\"PeriodicalId\":11254,\"journal\":{\"name\":\"Discrete & Continuous Dynamical Systems - S\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete & Continuous Dynamical Systems - S\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/dcds.2021142\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete & Continuous Dynamical Systems - S","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/dcds.2021142","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
摘要
We study the approximation of the nonlocal-interaction equation restricted to a compact manifold \begin{document}$ {\mathcal{M}} $\end{document} embedded in \begin{document}$ {\mathbb{R}}^d $\end{document}, and more generally compact sets with positive reach (i.e. prox-regular sets). We show that the equation on \begin{document}$ {\mathcal{M}} $\end{document} can be approximated by the classical nonlocal-interaction equation on \begin{document}$ {\mathbb{R}}^d $\end{document} by adding an external potential which strongly attracts to \begin{document}$ {\mathcal{M}} $\end{document}. The proof relies on the Sandier–Serfaty approach [23,24] to the \begin{document}$ \Gamma $\end{document}-convergence of gradient flows. As a by-product, we recover well-posedness for the nonlocal-interaction equation on \begin{document}$ {\mathcal{M}} $\end{document}, which was shown [10]. We also provide an another approximation to the interaction equation on \begin{document}$ {\mathcal{M}} $\end{document}, based on iterating approximately solving an interaction equation on \begin{document}$ {\mathbb{R}}^d $\end{document} and projecting to \begin{document}$ {\mathcal{M}} $\end{document}. We show convergence of this scheme, together with an estimate on the rate of convergence. Finally, we conduct numerical experiments, for both the attractive-potential-based and the projection-based approaches, that highlight the effects of the geometry on the dynamics.
The nonlocal-interaction equation near attracting manifolds
We study the approximation of the nonlocal-interaction equation restricted to a compact manifold \begin{document}$ {\mathcal{M}} $\end{document} embedded in \begin{document}$ {\mathbb{R}}^d $\end{document}, and more generally compact sets with positive reach (i.e. prox-regular sets). We show that the equation on \begin{document}$ {\mathcal{M}} $\end{document} can be approximated by the classical nonlocal-interaction equation on \begin{document}$ {\mathbb{R}}^d $\end{document} by adding an external potential which strongly attracts to \begin{document}$ {\mathcal{M}} $\end{document}. The proof relies on the Sandier–Serfaty approach [23,24] to the \begin{document}$ \Gamma $\end{document}-convergence of gradient flows. As a by-product, we recover well-posedness for the nonlocal-interaction equation on \begin{document}$ {\mathcal{M}} $\end{document}, which was shown [10]. We also provide an another approximation to the interaction equation on \begin{document}$ {\mathcal{M}} $\end{document}, based on iterating approximately solving an interaction equation on \begin{document}$ {\mathbb{R}}^d $\end{document} and projecting to \begin{document}$ {\mathcal{M}} $\end{document}. We show convergence of this scheme, together with an estimate on the rate of convergence. Finally, we conduct numerical experiments, for both the attractive-potential-based and the projection-based approaches, that highlight the effects of the geometry on the dynamics.