群智能优化算法及其在移动机器人路径规划中的应用

Xiu-juan Lei, Fei Wang, Ying Tan
{"title":"群智能优化算法及其在移动机器人路径规划中的应用","authors":"Xiu-juan Lei, Fei Wang, Ying Tan","doi":"10.4018/978-1-4666-9572-6.CH011","DOIUrl":null,"url":null,"abstract":"Mobile robot path planning is generally a kind of optimal problems, which is to find a best path of a track between a starting point to a goal point in the constraint conditions. Mobile robot path planning can be divided into two categories according to different environment planning awareness information: one is the global path planning and the other is the local path planning. We employed ACO, PSO, FA, FOA, FWA and ABC swarm intelligent optimization algorithms to optimize the global and local path planning of mobile robot, and gave the detailed implement steps and the comparing results to show the feasibility of using swarm intelligence optimization algorithms to solve the robot path planning problems.","PeriodicalId":50067,"journal":{"name":"Journal of Rapid Methods and Automation in Microbiology","volume":"39 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Swarm Intelligent Optimization Algorithms and Its Application in Mobile Robot Path Planning\",\"authors\":\"Xiu-juan Lei, Fei Wang, Ying Tan\",\"doi\":\"10.4018/978-1-4666-9572-6.CH011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mobile robot path planning is generally a kind of optimal problems, which is to find a best path of a track between a starting point to a goal point in the constraint conditions. Mobile robot path planning can be divided into two categories according to different environment planning awareness information: one is the global path planning and the other is the local path planning. We employed ACO, PSO, FA, FOA, FWA and ABC swarm intelligent optimization algorithms to optimize the global and local path planning of mobile robot, and gave the detailed implement steps and the comparing results to show the feasibility of using swarm intelligence optimization algorithms to solve the robot path planning problems.\",\"PeriodicalId\":50067,\"journal\":{\"name\":\"Journal of Rapid Methods and Automation in Microbiology\",\"volume\":\"39 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Rapid Methods and Automation in Microbiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/978-1-4666-9572-6.CH011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Rapid Methods and Automation in Microbiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/978-1-4666-9572-6.CH011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

移动机器人路径规划一般是一类最优问题,即在约束条件下,从起点到目标点寻找一条轨迹的最优路径。根据环境规划感知信息的不同,移动机器人路径规划可分为两类:一类是全局路径规划,另一类是局部路径规划。采用ACO、PSO、FA、FOA、FWA和ABC等群智能优化算法对移动机器人的全局和局部路径规划进行了优化,给出了详细的实现步骤和比较结果,证明了利用群智能优化算法解决机器人路径规划问题的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Swarm Intelligent Optimization Algorithms and Its Application in Mobile Robot Path Planning
Mobile robot path planning is generally a kind of optimal problems, which is to find a best path of a track between a starting point to a goal point in the constraint conditions. Mobile robot path planning can be divided into two categories according to different environment planning awareness information: one is the global path planning and the other is the local path planning. We employed ACO, PSO, FA, FOA, FWA and ABC swarm intelligent optimization algorithms to optimize the global and local path planning of mobile robot, and gave the detailed implement steps and the comparing results to show the feasibility of using swarm intelligence optimization algorithms to solve the robot path planning problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Rapid Methods and Automation in Microbiology
Journal of Rapid Methods and Automation in Microbiology 生物-生物工程与应用微生物
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信