向量优化的Wolfe线搜索算法

L. R. L. Pérez, L. F. Prudente
{"title":"向量优化的Wolfe线搜索算法","authors":"L. R. L. Pérez, L. F. Prudente","doi":"10.1145/3342104","DOIUrl":null,"url":null,"abstract":"In a recent article, Lucambio Pérez and Prudente extended the Wolfe conditions for the vector-valued optimization. Here, we propose a line search algorithm for finding a step size satisfying the strong Wolfe conditions in the vector optimization setting. Well definedness and finite termination results are provided. We discuss practical aspects related to the algorithm and present some numerical experiments illustrating its applicability. Codes supporting this article are written in Fortran 90 and are freely available for download.","PeriodicalId":7036,"journal":{"name":"ACM Transactions on Mathematical Software (TOMS)","volume":"118 1","pages":"1 - 23"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"A Wolfe Line Search Algorithm for Vector Optimization\",\"authors\":\"L. R. L. Pérez, L. F. Prudente\",\"doi\":\"10.1145/3342104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In a recent article, Lucambio Pérez and Prudente extended the Wolfe conditions for the vector-valued optimization. Here, we propose a line search algorithm for finding a step size satisfying the strong Wolfe conditions in the vector optimization setting. Well definedness and finite termination results are provided. We discuss practical aspects related to the algorithm and present some numerical experiments illustrating its applicability. Codes supporting this article are written in Fortran 90 and are freely available for download.\",\"PeriodicalId\":7036,\"journal\":{\"name\":\"ACM Transactions on Mathematical Software (TOMS)\",\"volume\":\"118 1\",\"pages\":\"1 - 23\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Mathematical Software (TOMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3342104\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Mathematical Software (TOMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3342104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

在最近的一篇文章中,Lucambio psamurez和Prudente推广了向量值优化的Wolfe条件。在这里,我们提出了一种直线搜索算法,用于在向量优化设置中寻找满足强Wolfe条件的步长。给出了良好的定义性和有限终止结果。我们讨论了与该算法有关的实际问题,并给出了一些数值实验来说明其适用性。支持本文的代码是用Fortran 90编写的,可以免费下载。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Wolfe Line Search Algorithm for Vector Optimization
In a recent article, Lucambio Pérez and Prudente extended the Wolfe conditions for the vector-valued optimization. Here, we propose a line search algorithm for finding a step size satisfying the strong Wolfe conditions in the vector optimization setting. Well definedness and finite termination results are provided. We discuss practical aspects related to the algorithm and present some numerical experiments illustrating its applicability. Codes supporting this article are written in Fortran 90 and are freely available for download.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信