学习模棱两可的长期前景

Hongseok Choi
{"title":"学习模棱两可的长期前景","authors":"Hongseok Choi","doi":"10.2139/ssrn.3490231","DOIUrl":null,"url":null,"abstract":"This paper investigates whether and when ambiguity afflicting the long-term prospects of a market fades away in a nonexchangeable environment (time-varying short-term prospects). Two types of ambiguity are considered: static (multiple priors) and dynamic (multiple laws of motion). In the absence of dynamic ambiguity, likelihood-based learning resolves the static ambiguity. In the presence of dynamic ambiguity, on the other hand, likelihood-based learning fails. In this case, the static ambiguity fades away if the agent incorporates into the objective criteria (likelihood) her subjective criteria (penalty proportional to the Kullback-Leibler divergence).","PeriodicalId":11465,"journal":{"name":"Econometrics: Econometric & Statistical Methods - General eJournal","volume":"63 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Learning About Ambiguous Long-Term Prospects\",\"authors\":\"Hongseok Choi\",\"doi\":\"10.2139/ssrn.3490231\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates whether and when ambiguity afflicting the long-term prospects of a market fades away in a nonexchangeable environment (time-varying short-term prospects). Two types of ambiguity are considered: static (multiple priors) and dynamic (multiple laws of motion). In the absence of dynamic ambiguity, likelihood-based learning resolves the static ambiguity. In the presence of dynamic ambiguity, on the other hand, likelihood-based learning fails. In this case, the static ambiguity fades away if the agent incorporates into the objective criteria (likelihood) her subjective criteria (penalty proportional to the Kullback-Leibler divergence).\",\"PeriodicalId\":11465,\"journal\":{\"name\":\"Econometrics: Econometric & Statistical Methods - General eJournal\",\"volume\":\"63 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Econometrics: Econometric & Statistical Methods - General eJournal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3490231\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometrics: Econometric & Statistical Methods - General eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3490231","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了在不可交换的环境(时变的短期前景)中,影响市场长期前景的模糊性是否以及何时消失。考虑两种类型的模糊性:静态(多个先验)和动态(多个运动定律)。在不存在动态歧义的情况下,基于似然的学习解决了静态歧义。另一方面,在存在动态歧义的情况下,基于似然的学习失败。在这种情况下,如果代理将其主观标准(与kullbak - leibler散度成比例的惩罚)纳入客观标准(可能性),则静态模糊性就会消失。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning About Ambiguous Long-Term Prospects
This paper investigates whether and when ambiguity afflicting the long-term prospects of a market fades away in a nonexchangeable environment (time-varying short-term prospects). Two types of ambiguity are considered: static (multiple priors) and dynamic (multiple laws of motion). In the absence of dynamic ambiguity, likelihood-based learning resolves the static ambiguity. In the presence of dynamic ambiguity, on the other hand, likelihood-based learning fails. In this case, the static ambiguity fades away if the agent incorporates into the objective criteria (likelihood) her subjective criteria (penalty proportional to the Kullback-Leibler divergence).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信