I. McCue, B. Gaskey, Michael C. Brupbacher, W. M. Buchta, A. Chuang, K. Xie, W. Kuo, J. Erlebacher
{"title":"自组织高硬度热喷涂涂层","authors":"I. McCue, B. Gaskey, Michael C. Brupbacher, W. M. Buchta, A. Chuang, K. Xie, W. Kuo, J. Erlebacher","doi":"10.2139/ssrn.3793930","DOIUrl":null,"url":null,"abstract":"We present a new dealloying-based technique to form fully-dense and high-hardness metal composite coatings. By depositing then heat treating a TiCr alloy coating on a Ni-base superalloy, a eutectic reaction occurs at the coating/substrate interface, which drives spontaneous pattern formation in both alloys analogous to liquid metal dealloying. The coating exhibits a significantly higher hardness (15 GPa) than both the starting alloy (3.7 GPa) and precursor coating (6 GPa), measured by micro- and nanoindentation, while maintaining the ability to plastically deform during micro-indentation experiments without apparent cracking or spallation. The flexibility and scalability of the dealloying process used here demonstrates a promising route towards protective coatings for structural alloys.","PeriodicalId":18341,"journal":{"name":"Materials Science eJournal","volume":"78 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Self-Organized High-Hardness Thermal Spray Coatings\",\"authors\":\"I. McCue, B. Gaskey, Michael C. Brupbacher, W. M. Buchta, A. Chuang, K. Xie, W. Kuo, J. Erlebacher\",\"doi\":\"10.2139/ssrn.3793930\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a new dealloying-based technique to form fully-dense and high-hardness metal composite coatings. By depositing then heat treating a TiCr alloy coating on a Ni-base superalloy, a eutectic reaction occurs at the coating/substrate interface, which drives spontaneous pattern formation in both alloys analogous to liquid metal dealloying. The coating exhibits a significantly higher hardness (15 GPa) than both the starting alloy (3.7 GPa) and precursor coating (6 GPa), measured by micro- and nanoindentation, while maintaining the ability to plastically deform during micro-indentation experiments without apparent cracking or spallation. The flexibility and scalability of the dealloying process used here demonstrates a promising route towards protective coatings for structural alloys.\",\"PeriodicalId\":18341,\"journal\":{\"name\":\"Materials Science eJournal\",\"volume\":\"78 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Science eJournal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3793930\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3793930","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We present a new dealloying-based technique to form fully-dense and high-hardness metal composite coatings. By depositing then heat treating a TiCr alloy coating on a Ni-base superalloy, a eutectic reaction occurs at the coating/substrate interface, which drives spontaneous pattern formation in both alloys analogous to liquid metal dealloying. The coating exhibits a significantly higher hardness (15 GPa) than both the starting alloy (3.7 GPa) and precursor coating (6 GPa), measured by micro- and nanoindentation, while maintaining the ability to plastically deform during micro-indentation experiments without apparent cracking or spallation. The flexibility and scalability of the dealloying process used here demonstrates a promising route towards protective coatings for structural alloys.