关于玻尔兹曼熵的广泛性的评论

Rol, Riek, Alex, E. Sobol'
{"title":"关于玻尔兹曼熵的广泛性的评论","authors":"Rol, Riek, Alex, E. Sobol'","doi":"10.4172/2161-0398.1000207","DOIUrl":null,"url":null,"abstract":"In thermodynamics entropy Std is an extensive state function. Its derivation by statistical mechanics following Boltzmann and Gibbs with the famous formula S=kBlnW for a micro-canonical ensemble with N particles, kB the Boltzmann constant, and W the number of accessible micro-states is however in general not extensive unless the Stirling approximation given by lnN! – NlnN + N is used. Furthermore, at the thermodynamic limit with the number of particles N→∞ at constant density the Stirling approximation can not be used to show extensivity because limN→∞ (lnN! – NlnN + N)=∞. Hence, the Boltzmann entropy S as shown here for the ideal gas is neither for a small system with N particles nor at the thermodynamic limit extensive. Thus, if strict extensivity for the entropy is requested the claim of statistical mechanics that the Boltzmann entropy is a microscopic description of its thermodynamic analog is challenged.","PeriodicalId":94103,"journal":{"name":"Journal of physical chemistry & biophysics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Comments on the Extensivity of the Boltzmann Entropy\",\"authors\":\"Rol, Riek, Alex, E. Sobol'\",\"doi\":\"10.4172/2161-0398.1000207\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In thermodynamics entropy Std is an extensive state function. Its derivation by statistical mechanics following Boltzmann and Gibbs with the famous formula S=kBlnW for a micro-canonical ensemble with N particles, kB the Boltzmann constant, and W the number of accessible micro-states is however in general not extensive unless the Stirling approximation given by lnN! – NlnN + N is used. Furthermore, at the thermodynamic limit with the number of particles N→∞ at constant density the Stirling approximation can not be used to show extensivity because limN→∞ (lnN! – NlnN + N)=∞. Hence, the Boltzmann entropy S as shown here for the ideal gas is neither for a small system with N particles nor at the thermodynamic limit extensive. Thus, if strict extensivity for the entropy is requested the claim of statistical mechanics that the Boltzmann entropy is a microscopic description of its thermodynamic analog is challenged.\",\"PeriodicalId\":94103,\"journal\":{\"name\":\"Journal of physical chemistry & biophysics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of physical chemistry & biophysics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4172/2161-0398.1000207\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of physical chemistry & biophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/2161-0398.1000207","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

在热力学中,熵是一个广义的状态函数。它由统计力学根据玻尔兹曼和吉布斯用著名的公式S=kBlnW推导出的N个粒子的微正则系综,kB为玻尔兹曼常数,W为可达的微态数,但通常不广泛,除非由lnN!—“NlnN + N”。此外,在恒定密度下粒子数N→∞的热力学极限下,由于limN→∞(lnN!—NlnN + N)=∞。因此,这里所示的理想气体的玻尔兹曼熵S既不适用于有N个粒子的小系统,也不适用于热力学极限。因此,如果要求熵的严格延展性,那么统计力学关于玻尔兹曼熵是其热力学类似物的微观描述的说法就受到了挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comments on the Extensivity of the Boltzmann Entropy
In thermodynamics entropy Std is an extensive state function. Its derivation by statistical mechanics following Boltzmann and Gibbs with the famous formula S=kBlnW for a micro-canonical ensemble with N particles, kB the Boltzmann constant, and W the number of accessible micro-states is however in general not extensive unless the Stirling approximation given by lnN! – NlnN + N is used. Furthermore, at the thermodynamic limit with the number of particles N→∞ at constant density the Stirling approximation can not be used to show extensivity because limN→∞ (lnN! – NlnN + N)=∞. Hence, the Boltzmann entropy S as shown here for the ideal gas is neither for a small system with N particles nor at the thermodynamic limit extensive. Thus, if strict extensivity for the entropy is requested the claim of statistical mechanics that the Boltzmann entropy is a microscopic description of its thermodynamic analog is challenged.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信