{"title":"关于玻尔兹曼熵的广泛性的评论","authors":"Rol, Riek, Alex, E. Sobol'","doi":"10.4172/2161-0398.1000207","DOIUrl":null,"url":null,"abstract":"In thermodynamics entropy Std is an extensive state function. Its derivation by statistical mechanics following Boltzmann and Gibbs with the famous formula S=kBlnW for a micro-canonical ensemble with N particles, kB the Boltzmann constant, and W the number of accessible micro-states is however in general not extensive unless the Stirling approximation given by lnN! – NlnN + N is used. Furthermore, at the thermodynamic limit with the number of particles N→∞ at constant density the Stirling approximation can not be used to show extensivity because limN→∞ (lnN! – NlnN + N)=∞. Hence, the Boltzmann entropy S as shown here for the ideal gas is neither for a small system with N particles nor at the thermodynamic limit extensive. Thus, if strict extensivity for the entropy is requested the claim of statistical mechanics that the Boltzmann entropy is a microscopic description of its thermodynamic analog is challenged.","PeriodicalId":94103,"journal":{"name":"Journal of physical chemistry & biophysics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Comments on the Extensivity of the Boltzmann Entropy\",\"authors\":\"Rol, Riek, Alex, E. Sobol'\",\"doi\":\"10.4172/2161-0398.1000207\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In thermodynamics entropy Std is an extensive state function. Its derivation by statistical mechanics following Boltzmann and Gibbs with the famous formula S=kBlnW for a micro-canonical ensemble with N particles, kB the Boltzmann constant, and W the number of accessible micro-states is however in general not extensive unless the Stirling approximation given by lnN! – NlnN + N is used. Furthermore, at the thermodynamic limit with the number of particles N→∞ at constant density the Stirling approximation can not be used to show extensivity because limN→∞ (lnN! – NlnN + N)=∞. Hence, the Boltzmann entropy S as shown here for the ideal gas is neither for a small system with N particles nor at the thermodynamic limit extensive. Thus, if strict extensivity for the entropy is requested the claim of statistical mechanics that the Boltzmann entropy is a microscopic description of its thermodynamic analog is challenged.\",\"PeriodicalId\":94103,\"journal\":{\"name\":\"Journal of physical chemistry & biophysics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of physical chemistry & biophysics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4172/2161-0398.1000207\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of physical chemistry & biophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/2161-0398.1000207","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Comments on the Extensivity of the Boltzmann Entropy
In thermodynamics entropy Std is an extensive state function. Its derivation by statistical mechanics following Boltzmann and Gibbs with the famous formula S=kBlnW for a micro-canonical ensemble with N particles, kB the Boltzmann constant, and W the number of accessible micro-states is however in general not extensive unless the Stirling approximation given by lnN! – NlnN + N is used. Furthermore, at the thermodynamic limit with the number of particles N→∞ at constant density the Stirling approximation can not be used to show extensivity because limN→∞ (lnN! – NlnN + N)=∞. Hence, the Boltzmann entropy S as shown here for the ideal gas is neither for a small system with N particles nor at the thermodynamic limit extensive. Thus, if strict extensivity for the entropy is requested the claim of statistical mechanics that the Boltzmann entropy is a microscopic description of its thermodynamic analog is challenged.