随机套利收益的分数阶Black Scholes期权定价

B. Osu, Chukwunezu A. Ifeoma
{"title":"随机套利收益的分数阶Black Scholes期权定价","authors":"B. Osu, Chukwunezu A. Ifeoma","doi":"10.12691/ijpdea-4-2-1","DOIUrl":null,"url":null,"abstract":"Option price and random arbitrage returns change on different time scales allow the development of an asymptotic pricing theory involving the options rather than exact prices. The role that random arbitrage opportunities play in pricing financial derivatives can be determined. In this paper, we construct Green’s functions for terminal boundary value problems of the fractional Black-Scholes equation. We follow further an approach suggested in literature and focus on the pricing bands for options that account for random arbitrage opportunities and got similar result for the fractional Black- Scholes option pricing.","PeriodicalId":11162,"journal":{"name":"Differential Equations and Applications","volume":"43 1","pages":"20-24"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Fractional Black Scholes Option Pricing with Stochastic Arbitrage Return\",\"authors\":\"B. Osu, Chukwunezu A. Ifeoma\",\"doi\":\"10.12691/ijpdea-4-2-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Option price and random arbitrage returns change on different time scales allow the development of an asymptotic pricing theory involving the options rather than exact prices. The role that random arbitrage opportunities play in pricing financial derivatives can be determined. In this paper, we construct Green’s functions for terminal boundary value problems of the fractional Black-Scholes equation. We follow further an approach suggested in literature and focus on the pricing bands for options that account for random arbitrage opportunities and got similar result for the fractional Black- Scholes option pricing.\",\"PeriodicalId\":11162,\"journal\":{\"name\":\"Differential Equations and Applications\",\"volume\":\"43 1\",\"pages\":\"20-24\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Differential Equations and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12691/ijpdea-4-2-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Equations and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12691/ijpdea-4-2-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

期权价格和随机套利收益在不同时间尺度上的变化允许发展涉及期权而不是确切价格的渐近定价理论。随机套利机会在金融衍生品定价中的作用是可以确定的。本文构造了分数阶Black-Scholes方程端点边值问题的格林函数。我们进一步遵循文献中提出的方法,重点研究了考虑随机套利机会的期权定价区间,并得到了分数阶Black- Scholes期权定价的类似结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fractional Black Scholes Option Pricing with Stochastic Arbitrage Return
Option price and random arbitrage returns change on different time scales allow the development of an asymptotic pricing theory involving the options rather than exact prices. The role that random arbitrage opportunities play in pricing financial derivatives can be determined. In this paper, we construct Green’s functions for terminal boundary value problems of the fractional Black-Scholes equation. We follow further an approach suggested in literature and focus on the pricing bands for options that account for random arbitrage opportunities and got similar result for the fractional Black- Scholes option pricing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信