基于欧氏距离分层随机抽样的大数据挖掘聚类模型

IF 0.9 Q3 MATHEMATICS, APPLIED
Kamlesh Kumar Pandey, Diwakar Shukla
{"title":"基于欧氏距离分层随机抽样的大数据挖掘聚类模型","authors":"Kamlesh Kumar Pandey,&nbsp;Diwakar Shukla","doi":"10.1002/cmm4.1206","DOIUrl":null,"url":null,"abstract":"<p>Big data mining is related to large-scale data analysis and faces computational cost-related challenges due to the exponential growth of digital technologies. Classical data mining algorithms suffer from computational deficiency, memory utilization, resource optimization, scale-up, and speed-up related challenges in big data mining. Sampling is one of the most effective data reduction techniques that reduces the computational cost, improves scalability and computational speed with high efficiency for any data mining algorithm in single and multiple machine execution environments. This study suggested a Euclidean distance-based stratum method for stratum creation and a stratified random sampling-based big data mining model using the K-Means clustering (SSK-Means) algorithm in a single machine execution environment. The performance of the SSK-Means algorithm has achieved better cluster quality, speed-up, scale-up, and memory utilization against the random sampling-based K-Means and classical K-Means algorithms using silhouette coefficient, Davies Bouldin index, Calinski Harabasz index, execution time, and speedup ratio internal measures.</p>","PeriodicalId":100308,"journal":{"name":"Computational and Mathematical Methods","volume":"3 6","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2021-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cmm4.1206","citationCount":"3","resultStr":"{\"title\":\"Euclidean distance stratified random sampling based clustering model for big data mining\",\"authors\":\"Kamlesh Kumar Pandey,&nbsp;Diwakar Shukla\",\"doi\":\"10.1002/cmm4.1206\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Big data mining is related to large-scale data analysis and faces computational cost-related challenges due to the exponential growth of digital technologies. Classical data mining algorithms suffer from computational deficiency, memory utilization, resource optimization, scale-up, and speed-up related challenges in big data mining. Sampling is one of the most effective data reduction techniques that reduces the computational cost, improves scalability and computational speed with high efficiency for any data mining algorithm in single and multiple machine execution environments. This study suggested a Euclidean distance-based stratum method for stratum creation and a stratified random sampling-based big data mining model using the K-Means clustering (SSK-Means) algorithm in a single machine execution environment. The performance of the SSK-Means algorithm has achieved better cluster quality, speed-up, scale-up, and memory utilization against the random sampling-based K-Means and classical K-Means algorithms using silhouette coefficient, Davies Bouldin index, Calinski Harabasz index, execution time, and speedup ratio internal measures.</p>\",\"PeriodicalId\":100308,\"journal\":{\"name\":\"Computational and Mathematical Methods\",\"volume\":\"3 6\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2021-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cmm4.1206\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational and Mathematical Methods\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cmm4.1206\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and Mathematical Methods","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cmm4.1206","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 3

摘要

大数据挖掘涉及大规模数据分析,由于数字技术的指数级增长,大数据挖掘面临着与计算成本相关的挑战。在大数据挖掘中,传统的数据挖掘算法面临着计算量不足、内存占用、资源优化、规模化、提速等方面的挑战。采样是最有效的数据约简技术之一,对于任何数据挖掘算法在单机和多机执行环境下都能有效地降低计算成本,提高可扩展性和计算速度。本研究提出了一种基于欧几里得距离的地层创建方法和一种基于分层随机抽样的大数据挖掘模型,该模型在单机执行环境下使用K-Means聚类(SSK-Means)算法。采用轮廓系数、Davies Bouldin指数、Calinski Harabasz指数、执行时间和加速比等内部度量指标,与基于随机抽样的K-Means和经典K-Means算法相比,SSK-Means算法在聚类质量、加速、扩展和内存利用率方面取得了更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Euclidean distance stratified random sampling based clustering model for big data mining

Big data mining is related to large-scale data analysis and faces computational cost-related challenges due to the exponential growth of digital technologies. Classical data mining algorithms suffer from computational deficiency, memory utilization, resource optimization, scale-up, and speed-up related challenges in big data mining. Sampling is one of the most effective data reduction techniques that reduces the computational cost, improves scalability and computational speed with high efficiency for any data mining algorithm in single and multiple machine execution environments. This study suggested a Euclidean distance-based stratum method for stratum creation and a stratified random sampling-based big data mining model using the K-Means clustering (SSK-Means) algorithm in a single machine execution environment. The performance of the SSK-Means algorithm has achieved better cluster quality, speed-up, scale-up, and memory utilization against the random sampling-based K-Means and classical K-Means algorithms using silhouette coefficient, Davies Bouldin index, Calinski Harabasz index, execution time, and speedup ratio internal measures.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信