Tian Jia, S. Stanier, P. Watson, Xiaowei Feng, S. Gourvenec
{"title":"可容许移动地基中土堤累积和峰值滑动阻力预测的理论框架","authors":"Tian Jia, S. Stanier, P. Watson, Xiaowei Feng, S. Gourvenec","doi":"10.1139/cgj-2023-0138","DOIUrl":null,"url":null,"abstract":"Tolerably mobile subsea foundations are designed to slide on the seabed to accommodate flowline thermal expansion and contraction, and are a potential alternative to conventional (fixed) foundations. During the periodic sliding events that occur during operation, soil berms form at the extremities of the foundation footprint. The size of the berm increases throughout the life-cycle of the foundation, leading to increasing peak sliding resistance. This may hinder mobility of foundation and overstress the pipeline connections that the foundation is designed to support. Equally, the berms may be relied on to reduce sliding and thus minimize settlement of the foundation, which can also overstress pipeline connections. This paper analyses the mechanism leading to berm accumulation and its mobilisation, also addressing periodic remoulding and reconsolidation of the sediment in the berm. A framework is proposed to predict the accumulation of soil berms and the resulting peak sliding resistance, and is validated by eight centrifuge model tests performed on a kaolin clay and a carbonate silt.","PeriodicalId":9382,"journal":{"name":"Canadian Geotechnical Journal","volume":"138 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2023-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Theoretical framework for predicting accumulation of soil berms and peak sliding resistance for tolerably mobile foundations\",\"authors\":\"Tian Jia, S. Stanier, P. Watson, Xiaowei Feng, S. Gourvenec\",\"doi\":\"10.1139/cgj-2023-0138\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tolerably mobile subsea foundations are designed to slide on the seabed to accommodate flowline thermal expansion and contraction, and are a potential alternative to conventional (fixed) foundations. During the periodic sliding events that occur during operation, soil berms form at the extremities of the foundation footprint. The size of the berm increases throughout the life-cycle of the foundation, leading to increasing peak sliding resistance. This may hinder mobility of foundation and overstress the pipeline connections that the foundation is designed to support. Equally, the berms may be relied on to reduce sliding and thus minimize settlement of the foundation, which can also overstress pipeline connections. This paper analyses the mechanism leading to berm accumulation and its mobilisation, also addressing periodic remoulding and reconsolidation of the sediment in the berm. A framework is proposed to predict the accumulation of soil berms and the resulting peak sliding resistance, and is validated by eight centrifuge model tests performed on a kaolin clay and a carbonate silt.\",\"PeriodicalId\":9382,\"journal\":{\"name\":\"Canadian Geotechnical Journal\",\"volume\":\"138 1\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2023-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canadian Geotechnical Journal\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1139/cgj-2023-0138\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Geotechnical Journal","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1139/cgj-2023-0138","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
Theoretical framework for predicting accumulation of soil berms and peak sliding resistance for tolerably mobile foundations
Tolerably mobile subsea foundations are designed to slide on the seabed to accommodate flowline thermal expansion and contraction, and are a potential alternative to conventional (fixed) foundations. During the periodic sliding events that occur during operation, soil berms form at the extremities of the foundation footprint. The size of the berm increases throughout the life-cycle of the foundation, leading to increasing peak sliding resistance. This may hinder mobility of foundation and overstress the pipeline connections that the foundation is designed to support. Equally, the berms may be relied on to reduce sliding and thus minimize settlement of the foundation, which can also overstress pipeline connections. This paper analyses the mechanism leading to berm accumulation and its mobilisation, also addressing periodic remoulding and reconsolidation of the sediment in the berm. A framework is proposed to predict the accumulation of soil berms and the resulting peak sliding resistance, and is validated by eight centrifuge model tests performed on a kaolin clay and a carbonate silt.
期刊介绍:
The Canadian Geotechnical Journal features articles, notes, reviews, and discussions related to new developments in geotechnical and geoenvironmental engineering, and applied sciences. The topics of papers written by researchers and engineers/scientists active in industry include soil and rock mechanics, material properties and fundamental behaviour, site characterization, foundations, excavations, tunnels, dams and embankments, slopes, landslides, geological and rock engineering, ground improvement, hydrogeology and contaminant hydrogeology, geochemistry, waste management, geosynthetics, offshore engineering, ice, frozen ground and northern engineering, risk and reliability applications, and physical and numerical modelling.
Contributions that have practical relevance are preferred, including case records. Purely theoretical contributions are not generally published unless they are on a topic of special interest (like unsaturated soil mechanics or cold regions geotechnics) or they have direct practical value.