可容许移动地基中土堤累积和峰值滑动阻力预测的理论框架

IF 3 3区 工程技术 Q2 ENGINEERING, GEOLOGICAL
Tian Jia, S. Stanier, P. Watson, Xiaowei Feng, S. Gourvenec
{"title":"可容许移动地基中土堤累积和峰值滑动阻力预测的理论框架","authors":"Tian Jia, S. Stanier, P. Watson, Xiaowei Feng, S. Gourvenec","doi":"10.1139/cgj-2023-0138","DOIUrl":null,"url":null,"abstract":"Tolerably mobile subsea foundations are designed to slide on the seabed to accommodate flowline thermal expansion and contraction, and are a potential alternative to conventional (fixed) foundations. During the periodic sliding events that occur during operation, soil berms form at the extremities of the foundation footprint. The size of the berm increases throughout the life-cycle of the foundation, leading to increasing peak sliding resistance. This may hinder mobility of foundation and overstress the pipeline connections that the foundation is designed to support. Equally, the berms may be relied on to reduce sliding and thus minimize settlement of the foundation, which can also overstress pipeline connections. This paper analyses the mechanism leading to berm accumulation and its mobilisation, also addressing periodic remoulding and reconsolidation of the sediment in the berm. A framework is proposed to predict the accumulation of soil berms and the resulting peak sliding resistance, and is validated by eight centrifuge model tests performed on a kaolin clay and a carbonate silt.","PeriodicalId":9382,"journal":{"name":"Canadian Geotechnical Journal","volume":"138 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2023-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Theoretical framework for predicting accumulation of soil berms and peak sliding resistance for tolerably mobile foundations\",\"authors\":\"Tian Jia, S. Stanier, P. Watson, Xiaowei Feng, S. Gourvenec\",\"doi\":\"10.1139/cgj-2023-0138\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tolerably mobile subsea foundations are designed to slide on the seabed to accommodate flowline thermal expansion and contraction, and are a potential alternative to conventional (fixed) foundations. During the periodic sliding events that occur during operation, soil berms form at the extremities of the foundation footprint. The size of the berm increases throughout the life-cycle of the foundation, leading to increasing peak sliding resistance. This may hinder mobility of foundation and overstress the pipeline connections that the foundation is designed to support. Equally, the berms may be relied on to reduce sliding and thus minimize settlement of the foundation, which can also overstress pipeline connections. This paper analyses the mechanism leading to berm accumulation and its mobilisation, also addressing periodic remoulding and reconsolidation of the sediment in the berm. A framework is proposed to predict the accumulation of soil berms and the resulting peak sliding resistance, and is validated by eight centrifuge model tests performed on a kaolin clay and a carbonate silt.\",\"PeriodicalId\":9382,\"journal\":{\"name\":\"Canadian Geotechnical Journal\",\"volume\":\"138 1\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2023-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canadian Geotechnical Journal\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1139/cgj-2023-0138\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Geotechnical Journal","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1139/cgj-2023-0138","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0

摘要

可移动海底基础可以在海床上滑动,以适应管道的热膨胀和收缩,是传统(固定)基础的潜在替代方案。在运行过程中发生的周期性滑动事件中,在基础足迹的末端形成土堤。在整个基础生命周期中,护堤尺寸不断增大,导致峰值滑动阻力增大。这可能会阻碍基础的流动性,并对基础设计用于支撑的管道连接施加过大的应力。同样,可以依靠护堤来减少滑动,从而最大限度地减少基础的沉降,这也可能对管道连接产生过大的应力。本文分析了导致护堤堆积及其动员的机制,并讨论了护堤中沉积物的周期性重塑和再固结。提出了一个框架来预测土壤护堤的积累和由此产生的峰值滑动阻力,并通过在高岭土粘土和碳酸盐粉土上进行的8次离心模型试验进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Theoretical framework for predicting accumulation of soil berms and peak sliding resistance for tolerably mobile foundations
Tolerably mobile subsea foundations are designed to slide on the seabed to accommodate flowline thermal expansion and contraction, and are a potential alternative to conventional (fixed) foundations. During the periodic sliding events that occur during operation, soil berms form at the extremities of the foundation footprint. The size of the berm increases throughout the life-cycle of the foundation, leading to increasing peak sliding resistance. This may hinder mobility of foundation and overstress the pipeline connections that the foundation is designed to support. Equally, the berms may be relied on to reduce sliding and thus minimize settlement of the foundation, which can also overstress pipeline connections. This paper analyses the mechanism leading to berm accumulation and its mobilisation, also addressing periodic remoulding and reconsolidation of the sediment in the berm. A framework is proposed to predict the accumulation of soil berms and the resulting peak sliding resistance, and is validated by eight centrifuge model tests performed on a kaolin clay and a carbonate silt.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Canadian Geotechnical Journal
Canadian Geotechnical Journal 地学-地球科学综合
CiteScore
7.20
自引率
5.60%
发文量
163
审稿时长
7.5 months
期刊介绍: The Canadian Geotechnical Journal features articles, notes, reviews, and discussions related to new developments in geotechnical and geoenvironmental engineering, and applied sciences. The topics of papers written by researchers and engineers/scientists active in industry include soil and rock mechanics, material properties and fundamental behaviour, site characterization, foundations, excavations, tunnels, dams and embankments, slopes, landslides, geological and rock engineering, ground improvement, hydrogeology and contaminant hydrogeology, geochemistry, waste management, geosynthetics, offshore engineering, ice, frozen ground and northern engineering, risk and reliability applications, and physical and numerical modelling. Contributions that have practical relevance are preferred, including case records. Purely theoretical contributions are not generally published unless they are on a topic of special interest (like unsaturated soil mechanics or cold regions geotechnics) or they have direct practical value.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信