{"title":"利用开尔文探针技术的聚苯胺- dbsa气体传感器氨传感","authors":"A. Yadav, A. Agarwal, P. Agarwal, P. Saini","doi":"10.1155/2015/842536","DOIUrl":null,"url":null,"abstract":"Dodecyl benzene sulfonic acid (DBSA) doped polyaniline (PANI-DBSA) has been synthesized by chemical oxidative polymerization of aniline monomer in the presence of DBSA. The UV-visible spectroscopy and X-ray diffraction measurements confirm the formation of PANI and its doping by DBSA. SEM images show the formation of submicron size rod shaped PANI particles. A vibrating capacitor based ammonia gas sensor was prepared by spin coating PANI-DBSA film over copper (Cu) substrate. The sensor exploited Kelvin probe technique to monitor contact potential difference between PANI and Cu as a function of time and ammonia concentration. Upon exposure to 30 ppm ammonia, the sensor displays response time of 329 s, recovery time of 3600 s, and sensitivity value of 1.54 along with good repeatability.","PeriodicalId":16507,"journal":{"name":"Journal of Nanoparticles","volume":"138 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Ammonia Sensing by PANI-DBSA Based Gas Sensor Exploiting Kelvin Probe Technique\",\"authors\":\"A. Yadav, A. Agarwal, P. Agarwal, P. Saini\",\"doi\":\"10.1155/2015/842536\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dodecyl benzene sulfonic acid (DBSA) doped polyaniline (PANI-DBSA) has been synthesized by chemical oxidative polymerization of aniline monomer in the presence of DBSA. The UV-visible spectroscopy and X-ray diffraction measurements confirm the formation of PANI and its doping by DBSA. SEM images show the formation of submicron size rod shaped PANI particles. A vibrating capacitor based ammonia gas sensor was prepared by spin coating PANI-DBSA film over copper (Cu) substrate. The sensor exploited Kelvin probe technique to monitor contact potential difference between PANI and Cu as a function of time and ammonia concentration. Upon exposure to 30 ppm ammonia, the sensor displays response time of 329 s, recovery time of 3600 s, and sensitivity value of 1.54 along with good repeatability.\",\"PeriodicalId\":16507,\"journal\":{\"name\":\"Journal of Nanoparticles\",\"volume\":\"138 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nanoparticles\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2015/842536\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanoparticles","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2015/842536","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Ammonia Sensing by PANI-DBSA Based Gas Sensor Exploiting Kelvin Probe Technique
Dodecyl benzene sulfonic acid (DBSA) doped polyaniline (PANI-DBSA) has been synthesized by chemical oxidative polymerization of aniline monomer in the presence of DBSA. The UV-visible spectroscopy and X-ray diffraction measurements confirm the formation of PANI and its doping by DBSA. SEM images show the formation of submicron size rod shaped PANI particles. A vibrating capacitor based ammonia gas sensor was prepared by spin coating PANI-DBSA film over copper (Cu) substrate. The sensor exploited Kelvin probe technique to monitor contact potential difference between PANI and Cu as a function of time and ammonia concentration. Upon exposure to 30 ppm ammonia, the sensor displays response time of 329 s, recovery time of 3600 s, and sensitivity value of 1.54 along with good repeatability.