剩余有限群盒空间的有界同构猜想

IF 0.5 3区 数学 Q3 MATHEMATICS
Markus Zeggel
{"title":"剩余有限群盒空间的有界同构猜想","authors":"Markus Zeggel","doi":"10.1142/s1793525323500280","DOIUrl":null,"url":null,"abstract":"In this article we study a coarse version of the $K$-theoretic Farrell--Jones conjecture we call coarse or bounded isomorphism conjecture. Using controlled category theory we are able to translate this conjecture for asymptotically faithful covers into a more familiar form. This allows us to prove the conjecture for box spaces of residually finite groups whose Farrell--Jones assembly map with coefficients is an isomorphism.","PeriodicalId":49151,"journal":{"name":"Journal of Topology and Analysis","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2021-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Bounded Isomorphism Conjecture for Box Spaces of Residually Finite Groups\",\"authors\":\"Markus Zeggel\",\"doi\":\"10.1142/s1793525323500280\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article we study a coarse version of the $K$-theoretic Farrell--Jones conjecture we call coarse or bounded isomorphism conjecture. Using controlled category theory we are able to translate this conjecture for asymptotically faithful covers into a more familiar form. This allows us to prove the conjecture for box spaces of residually finite groups whose Farrell--Jones assembly map with coefficients is an isomorphism.\",\"PeriodicalId\":49151,\"journal\":{\"name\":\"Journal of Topology and Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2021-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Topology and Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s1793525323500280\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Topology and Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s1793525323500280","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们研究了K理论法雷尔-琼斯猜想的一个粗糙版本,我们称之为粗糙或有界同构猜想。利用控制范畴理论,我们能够将渐近忠实覆盖的这个猜想转化为更熟悉的形式。这使得我们证明了具有系数的Farrell—Jones集合映射是同构的剩余有限群的盒空间的猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Bounded Isomorphism Conjecture for Box Spaces of Residually Finite Groups
In this article we study a coarse version of the $K$-theoretic Farrell--Jones conjecture we call coarse or bounded isomorphism conjecture. Using controlled category theory we are able to translate this conjecture for asymptotically faithful covers into a more familiar form. This allows us to prove the conjecture for box spaces of residually finite groups whose Farrell--Jones assembly map with coefficients is an isomorphism.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
13
审稿时长
>12 weeks
期刊介绍: This journal is devoted to topology and analysis, broadly defined to include, for instance, differential geometry, geometric topology, geometric analysis, geometric group theory, index theory, noncommutative geometry, and aspects of probability on discrete structures, and geometry of Banach spaces. We welcome all excellent papers that have a geometric and/or analytic flavor that fosters the interactions between these fields. Papers published in this journal should break new ground or represent definitive progress on problems of current interest. On rare occasion, we will also accept survey papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信