技术笔记-矩阵指数微分及其在加权和分布中的应用

Oper. Res. Pub Date : 2022-02-08 DOI:10.1287/opre.2021.2257
Milan Kumar Das, Henghsiu Tsai, I. Kyriakou, Gianluca Fusai
{"title":"技术笔记-矩阵指数微分及其在加权和分布中的应用","authors":"Milan Kumar Das, Henghsiu Tsai, I. Kyriakou, Gianluca Fusai","doi":"10.1287/opre.2021.2257","DOIUrl":null,"url":null,"abstract":"On Modeling the Probability Distribution of Stochastic Sums In the “Technical Note—On Matrix Exponential Differentiation with Application to Weighted Sum Distributions,” Das, Tsai, Kyriakou, and Fusai propose an efficient methodology for approximating the unknown probability distribution of a weighted stochastic sum or time integral. Resulting from earlier contributions based on continuous-time Markov chain approximations of one-dimensional Markov processes is the Laplace transform of the unknown distribution available in exponential matrix form. In this paper, the authors develop a bona fide Pearson curve-fitting approach to this distribution based on the moments, which they recover from the derivatives of the Laplace transform. Motivated by the computational hurdles toward this, they derive computationally efficient closed-form expressions for the derivatives of the matrix exponential. They then apply to pricing average-based options.","PeriodicalId":19546,"journal":{"name":"Oper. Res.","volume":"121 1","pages":"1984-1995"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Technical Note - On Matrix Exponential Differentiation with Application to Weighted Sum Distributions\",\"authors\":\"Milan Kumar Das, Henghsiu Tsai, I. Kyriakou, Gianluca Fusai\",\"doi\":\"10.1287/opre.2021.2257\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"On Modeling the Probability Distribution of Stochastic Sums In the “Technical Note—On Matrix Exponential Differentiation with Application to Weighted Sum Distributions,” Das, Tsai, Kyriakou, and Fusai propose an efficient methodology for approximating the unknown probability distribution of a weighted stochastic sum or time integral. Resulting from earlier contributions based on continuous-time Markov chain approximations of one-dimensional Markov processes is the Laplace transform of the unknown distribution available in exponential matrix form. In this paper, the authors develop a bona fide Pearson curve-fitting approach to this distribution based on the moments, which they recover from the derivatives of the Laplace transform. Motivated by the computational hurdles toward this, they derive computationally efficient closed-form expressions for the derivatives of the matrix exponential. They then apply to pricing average-based options.\",\"PeriodicalId\":19546,\"journal\":{\"name\":\"Oper. Res.\",\"volume\":\"121 1\",\"pages\":\"1984-1995\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-02-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Oper. Res.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1287/opre.2021.2257\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oper. Res.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1287/opre.2021.2257","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

Das、Tsai、Kyriakou和Fusai在《矩阵指数微分在加权和分布中的应用技术笔记》中提出了一种有效的方法来近似加权随机和或时间积分的未知概率分布。基于一维马尔可夫过程的连续时间马尔可夫链近似的早期贡献是指数矩阵形式的未知分布的拉普拉斯变换。在本文中,作者开发了一种基于矩的真正的皮尔逊曲线拟合方法,这些矩是他们从拉普拉斯变换的导数中恢复的。由于这方面的计算障碍,他们为矩阵指数的导数导出了计算效率高的封闭形式表达式。然后将它们应用于基于平均价格的期权定价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Technical Note - On Matrix Exponential Differentiation with Application to Weighted Sum Distributions
On Modeling the Probability Distribution of Stochastic Sums In the “Technical Note—On Matrix Exponential Differentiation with Application to Weighted Sum Distributions,” Das, Tsai, Kyriakou, and Fusai propose an efficient methodology for approximating the unknown probability distribution of a weighted stochastic sum or time integral. Resulting from earlier contributions based on continuous-time Markov chain approximations of one-dimensional Markov processes is the Laplace transform of the unknown distribution available in exponential matrix form. In this paper, the authors develop a bona fide Pearson curve-fitting approach to this distribution based on the moments, which they recover from the derivatives of the Laplace transform. Motivated by the computational hurdles toward this, they derive computationally efficient closed-form expressions for the derivatives of the matrix exponential. They then apply to pricing average-based options.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信