金属合金增材制造中可印刷性图的评估

L. Johnson, M. Mahmoudi, Bing Zhang, R. Seede, Xueqin Huang, J. T. Maier, H. Maier, I. Karaman, A. Elwany, R. Arróyave
{"title":"金属合金增材制造中可印刷性图的评估","authors":"L. Johnson, M. Mahmoudi, Bing Zhang, R. Seede, Xueqin Huang, J. T. Maier, H. Maier, I. Karaman, A. Elwany, R. Arróyave","doi":"10.2139/ssrn.3358841","DOIUrl":null,"url":null,"abstract":"Abstract We propose a methodology for predicting the printability of an alloy, subject to laser powder bed fusion additive manufacturing. Regions in the process space associated with keyhole formation, balling, and lack of fusion are assumed to be strong functions of the geometry of the melt pool, which in turn is calculated for various combinations of laser power and scan speed via a Finite Element thermal model that incorporates a novel vaporization-based transition from surface to volumetric heating upon keyhole formation. Process maps established from the Finite Element simulations agree with experiments for a Ni-5wt.%Nb alloy and an equiatomic CoCrFeMnNi High Entropy Alloy and suggest a strong effect of chemistry on alloy printability. The printability maps resulting from the use of the simpler Eagar-Tsai model, on the other hand, are found to be in disagreement with experiments due to the oversimplification of this approach. Uncertainties in the printability maps were quantified via Monte Carlo sampling of a multivariate Gaussian Processes surrogate model trained on simulation outputs. The printability maps generated with the proposed method can be used in the selection—and potentially the design—of alloys best suited for Additive Manufacturing.","PeriodicalId":18731,"journal":{"name":"Materials Processing & Manufacturing eJournal","volume":"39 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"136","resultStr":"{\"title\":\"Assessing Printability Maps in Additive Manufacturing of Metal Alloys\",\"authors\":\"L. Johnson, M. Mahmoudi, Bing Zhang, R. Seede, Xueqin Huang, J. T. Maier, H. Maier, I. Karaman, A. Elwany, R. Arróyave\",\"doi\":\"10.2139/ssrn.3358841\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We propose a methodology for predicting the printability of an alloy, subject to laser powder bed fusion additive manufacturing. Regions in the process space associated with keyhole formation, balling, and lack of fusion are assumed to be strong functions of the geometry of the melt pool, which in turn is calculated for various combinations of laser power and scan speed via a Finite Element thermal model that incorporates a novel vaporization-based transition from surface to volumetric heating upon keyhole formation. Process maps established from the Finite Element simulations agree with experiments for a Ni-5wt.%Nb alloy and an equiatomic CoCrFeMnNi High Entropy Alloy and suggest a strong effect of chemistry on alloy printability. The printability maps resulting from the use of the simpler Eagar-Tsai model, on the other hand, are found to be in disagreement with experiments due to the oversimplification of this approach. Uncertainties in the printability maps were quantified via Monte Carlo sampling of a multivariate Gaussian Processes surrogate model trained on simulation outputs. The printability maps generated with the proposed method can be used in the selection—and potentially the design—of alloys best suited for Additive Manufacturing.\",\"PeriodicalId\":18731,\"journal\":{\"name\":\"Materials Processing & Manufacturing eJournal\",\"volume\":\"39 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"136\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Processing & Manufacturing eJournal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3358841\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Processing & Manufacturing eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3358841","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 136

摘要

摘要:我们提出了一种预测激光粉末床熔融增材制造合金可打印性的方法。过程空间中与钥匙孔形成、成球和熔合不足相关的区域被认为是熔池几何形状的强函数,然后通过一个有限元热模型计算激光功率和扫描速度的各种组合,该模型在钥匙孔形成时包含了一种新的基于蒸发的从表面加热到体积加热的转变。有限元模拟建立的工艺图与Ni-5wt的实验结果一致。%Nb合金和等原子CoCrFeMnNi高熵合金,表明化学对合金的可印刷性有很强的影响。另一方面,使用更简单的Eagar-Tsai模型得到的可印刷性图,由于这种方法的过度简化,被发现与实验不一致。打印性图中的不确定性通过蒙特卡罗采样对模拟输出训练的多元高斯过程代理模型进行量化。用所提出的方法生成的可打印性图可用于最适合增材制造的合金的选择和潜在的设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Assessing Printability Maps in Additive Manufacturing of Metal Alloys
Abstract We propose a methodology for predicting the printability of an alloy, subject to laser powder bed fusion additive manufacturing. Regions in the process space associated with keyhole formation, balling, and lack of fusion are assumed to be strong functions of the geometry of the melt pool, which in turn is calculated for various combinations of laser power and scan speed via a Finite Element thermal model that incorporates a novel vaporization-based transition from surface to volumetric heating upon keyhole formation. Process maps established from the Finite Element simulations agree with experiments for a Ni-5wt.%Nb alloy and an equiatomic CoCrFeMnNi High Entropy Alloy and suggest a strong effect of chemistry on alloy printability. The printability maps resulting from the use of the simpler Eagar-Tsai model, on the other hand, are found to be in disagreement with experiments due to the oversimplification of this approach. Uncertainties in the printability maps were quantified via Monte Carlo sampling of a multivariate Gaussian Processes surrogate model trained on simulation outputs. The printability maps generated with the proposed method can be used in the selection—and potentially the design—of alloys best suited for Additive Manufacturing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信