{"title":"使用3D打印的新型PLA支架进行介电诱导的细胞图谱","authors":"Zhijie Huan, H. Chu, Jie Yang, Dong Sun","doi":"10.1109/NANO.2016.7751549","DOIUrl":null,"url":null,"abstract":"This paper presents a new technique of fabricating 3D-printed scaffolds that can utilizes dielectrophoresis (DEP) for cell patterning. The scaffold was first fabricated using a 3D printer with a biodegradable polymer, polylactic acid (PLA). The electrical conductivity of the polymeric scaffold was enhanced through sputtering a thin layer of gold. When a voltage was supplied to the scaffold, non-uniform electric fields were generated so that cells were polarized and patterned onto the scaffold. Experiments were conducted to demonstrate that the gold-coated PLA scaffold could be used for rapid patterning MC3T3-E1 cells via DEP. Cell proliferation was assessed by (3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide) MTT method and the result confirms the DEP cell patterning mechanism is not cytotoxic.","PeriodicalId":6646,"journal":{"name":"2016 IEEE 16th International Conference on Nanotechnology (IEEE-NANO)","volume":"602 1","pages":"853-856"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dielectrophoresis-induced cell patterning using a new PLA scaffold made by 3D printing\",\"authors\":\"Zhijie Huan, H. Chu, Jie Yang, Dong Sun\",\"doi\":\"10.1109/NANO.2016.7751549\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a new technique of fabricating 3D-printed scaffolds that can utilizes dielectrophoresis (DEP) for cell patterning. The scaffold was first fabricated using a 3D printer with a biodegradable polymer, polylactic acid (PLA). The electrical conductivity of the polymeric scaffold was enhanced through sputtering a thin layer of gold. When a voltage was supplied to the scaffold, non-uniform electric fields were generated so that cells were polarized and patterned onto the scaffold. Experiments were conducted to demonstrate that the gold-coated PLA scaffold could be used for rapid patterning MC3T3-E1 cells via DEP. Cell proliferation was assessed by (3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide) MTT method and the result confirms the DEP cell patterning mechanism is not cytotoxic.\",\"PeriodicalId\":6646,\"journal\":{\"name\":\"2016 IEEE 16th International Conference on Nanotechnology (IEEE-NANO)\",\"volume\":\"602 1\",\"pages\":\"853-856\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE 16th International Conference on Nanotechnology (IEEE-NANO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NANO.2016.7751549\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 16th International Conference on Nanotechnology (IEEE-NANO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NANO.2016.7751549","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Dielectrophoresis-induced cell patterning using a new PLA scaffold made by 3D printing
This paper presents a new technique of fabricating 3D-printed scaffolds that can utilizes dielectrophoresis (DEP) for cell patterning. The scaffold was first fabricated using a 3D printer with a biodegradable polymer, polylactic acid (PLA). The electrical conductivity of the polymeric scaffold was enhanced through sputtering a thin layer of gold. When a voltage was supplied to the scaffold, non-uniform electric fields were generated so that cells were polarized and patterned onto the scaffold. Experiments were conducted to demonstrate that the gold-coated PLA scaffold could be used for rapid patterning MC3T3-E1 cells via DEP. Cell proliferation was assessed by (3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide) MTT method and the result confirms the DEP cell patterning mechanism is not cytotoxic.