推土器距离期望值的概化

William Q. Erickson
{"title":"推土器距离期望值的概化","authors":"William Q. Erickson","doi":"10.2140/astat.2021.12.139","DOIUrl":null,"url":null,"abstract":"The earth mover's distance (EMD), also called the first Wasserstein distance, can be naturally extended to compare arbitrarily many probability distributions, rather than only two, on the set $[n]=\\{1,\\dots,n\\}$. We present the details for this generalization, along with a highly efficient algorithm inspired by combinatorics; it turns out that in the special case of three distributions, the EMD is half the sum of the pairwise EMD's. Extending the methods of Bourn and Willenbring (arXiv:1903.03673), we compute the expected value of this generalized EMD on random $d$-tuples of distributions, using a generating function which coincides with the Hilbert series of the Segre embedding. We then use the EMD to analyze a real-world data set of grade distributions.","PeriodicalId":41066,"journal":{"name":"Journal of Algebraic Statistics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"A generalization for the expected value of the\\nearth mover’s distance\",\"authors\":\"William Q. Erickson\",\"doi\":\"10.2140/astat.2021.12.139\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The earth mover's distance (EMD), also called the first Wasserstein distance, can be naturally extended to compare arbitrarily many probability distributions, rather than only two, on the set $[n]=\\\\{1,\\\\dots,n\\\\}$. We present the details for this generalization, along with a highly efficient algorithm inspired by combinatorics; it turns out that in the special case of three distributions, the EMD is half the sum of the pairwise EMD's. Extending the methods of Bourn and Willenbring (arXiv:1903.03673), we compute the expected value of this generalized EMD on random $d$-tuples of distributions, using a generating function which coincides with the Hilbert series of the Segre embedding. We then use the EMD to analyze a real-world data set of grade distributions.\",\"PeriodicalId\":41066,\"journal\":{\"name\":\"Journal of Algebraic Statistics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Algebraic Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/astat.2021.12.139\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebraic Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/astat.2021.12.139","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

在集合$[n]=\{1,\dots,n\}$上,推土机的距离(EMD),也称为第一Wasserstein距离,可以自然地扩展到比较任意多个概率分布,而不仅仅是两个。我们介绍了这种泛化的细节,以及受组合学启发的高效算法;在三个分布的特殊情况下,EMD是成对EMD之和的一半。我们扩展了Bourn和Willenbring (arXiv:1903.03673)的方法,使用与Segre嵌入的Hilbert级数一致的生成函数,计算了该广义EMD在随机分布$d$元组上的期望值。然后,我们使用EMD来分析真实世界的等级分布数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A generalization for the expected value of the earth mover’s distance
The earth mover's distance (EMD), also called the first Wasserstein distance, can be naturally extended to compare arbitrarily many probability distributions, rather than only two, on the set $[n]=\{1,\dots,n\}$. We present the details for this generalization, along with a highly efficient algorithm inspired by combinatorics; it turns out that in the special case of three distributions, the EMD is half the sum of the pairwise EMD's. Extending the methods of Bourn and Willenbring (arXiv:1903.03673), we compute the expected value of this generalized EMD on random $d$-tuples of distributions, using a generating function which coincides with the Hilbert series of the Segre embedding. We then use the EMD to analyze a real-world data set of grade distributions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Algebraic Statistics
Journal of Algebraic Statistics STATISTICS & PROBABILITY-
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信