{"title":"推土器距离期望值的概化","authors":"William Q. Erickson","doi":"10.2140/astat.2021.12.139","DOIUrl":null,"url":null,"abstract":"The earth mover's distance (EMD), also called the first Wasserstein distance, can be naturally extended to compare arbitrarily many probability distributions, rather than only two, on the set $[n]=\\{1,\\dots,n\\}$. We present the details for this generalization, along with a highly efficient algorithm inspired by combinatorics; it turns out that in the special case of three distributions, the EMD is half the sum of the pairwise EMD's. Extending the methods of Bourn and Willenbring (arXiv:1903.03673), we compute the expected value of this generalized EMD on random $d$-tuples of distributions, using a generating function which coincides with the Hilbert series of the Segre embedding. We then use the EMD to analyze a real-world data set of grade distributions.","PeriodicalId":41066,"journal":{"name":"Journal of Algebraic Statistics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"A generalization for the expected value of the\\nearth mover’s distance\",\"authors\":\"William Q. Erickson\",\"doi\":\"10.2140/astat.2021.12.139\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The earth mover's distance (EMD), also called the first Wasserstein distance, can be naturally extended to compare arbitrarily many probability distributions, rather than only two, on the set $[n]=\\\\{1,\\\\dots,n\\\\}$. We present the details for this generalization, along with a highly efficient algorithm inspired by combinatorics; it turns out that in the special case of three distributions, the EMD is half the sum of the pairwise EMD's. Extending the methods of Bourn and Willenbring (arXiv:1903.03673), we compute the expected value of this generalized EMD on random $d$-tuples of distributions, using a generating function which coincides with the Hilbert series of the Segre embedding. We then use the EMD to analyze a real-world data set of grade distributions.\",\"PeriodicalId\":41066,\"journal\":{\"name\":\"Journal of Algebraic Statistics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Algebraic Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/astat.2021.12.139\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebraic Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/astat.2021.12.139","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A generalization for the expected value of the
earth mover’s distance
The earth mover's distance (EMD), also called the first Wasserstein distance, can be naturally extended to compare arbitrarily many probability distributions, rather than only two, on the set $[n]=\{1,\dots,n\}$. We present the details for this generalization, along with a highly efficient algorithm inspired by combinatorics; it turns out that in the special case of three distributions, the EMD is half the sum of the pairwise EMD's. Extending the methods of Bourn and Willenbring (arXiv:1903.03673), we compute the expected value of this generalized EMD on random $d$-tuples of distributions, using a generating function which coincides with the Hilbert series of the Segre embedding. We then use the EMD to analyze a real-world data set of grade distributions.