{"title":"马尔可夫调制跳跃-扩散风险模型中的q标度函数、Banach收缩原理和最终破产概率","authors":"Yuxuan Liu, Zhengjun Jiang, Yiwen Zhang","doi":"10.1080/03461238.2022.2078221","DOIUrl":null,"url":null,"abstract":"The paper investigates ultimate ruin probability, the probability that ruin time is finite, for an insurance company whose risk reserves follow a Markov-modulated jump–diffusion risk model. We use both the Banach contraction principle and q-scale functions to prove that ultimate ruin probability is the only fixed point of a contraction mapping and show that an iterative equation can be employed to calculate ultimate ruin probability by an iterative algorithm of approximating the fixed point. Using q-scale functions and the methodology from Gajek and Rudź [(2018). Banach contraction principle and ruin probabilities in regime-switching models. Insurance: Mathematics and Economics, 80, 45–53] applied to the Markov-modulated jump–diffusion risk model, we get a more explicit Lipschitz constant in the Banach contraction principle and conveniently verify some similar results of their appendix in our case.","PeriodicalId":49572,"journal":{"name":"Scandinavian Actuarial Journal","volume":"75 1","pages":"38 - 50"},"PeriodicalIF":1.6000,"publicationDate":"2022-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"q-scale function, Banach contraction principle, and ultimate ruin probability in a Markov-modulated jump–diffusion risk model\",\"authors\":\"Yuxuan Liu, Zhengjun Jiang, Yiwen Zhang\",\"doi\":\"10.1080/03461238.2022.2078221\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper investigates ultimate ruin probability, the probability that ruin time is finite, for an insurance company whose risk reserves follow a Markov-modulated jump–diffusion risk model. We use both the Banach contraction principle and q-scale functions to prove that ultimate ruin probability is the only fixed point of a contraction mapping and show that an iterative equation can be employed to calculate ultimate ruin probability by an iterative algorithm of approximating the fixed point. Using q-scale functions and the methodology from Gajek and Rudź [(2018). Banach contraction principle and ruin probabilities in regime-switching models. Insurance: Mathematics and Economics, 80, 45–53] applied to the Markov-modulated jump–diffusion risk model, we get a more explicit Lipschitz constant in the Banach contraction principle and conveniently verify some similar results of their appendix in our case.\",\"PeriodicalId\":49572,\"journal\":{\"name\":\"Scandinavian Actuarial Journal\",\"volume\":\"75 1\",\"pages\":\"38 - 50\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2022-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scandinavian Actuarial Journal\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.1080/03461238.2022.2078221\",\"RegionNum\":3,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scandinavian Actuarial Journal","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1080/03461238.2022.2078221","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
q-scale function, Banach contraction principle, and ultimate ruin probability in a Markov-modulated jump–diffusion risk model
The paper investigates ultimate ruin probability, the probability that ruin time is finite, for an insurance company whose risk reserves follow a Markov-modulated jump–diffusion risk model. We use both the Banach contraction principle and q-scale functions to prove that ultimate ruin probability is the only fixed point of a contraction mapping and show that an iterative equation can be employed to calculate ultimate ruin probability by an iterative algorithm of approximating the fixed point. Using q-scale functions and the methodology from Gajek and Rudź [(2018). Banach contraction principle and ruin probabilities in regime-switching models. Insurance: Mathematics and Economics, 80, 45–53] applied to the Markov-modulated jump–diffusion risk model, we get a more explicit Lipschitz constant in the Banach contraction principle and conveniently verify some similar results of their appendix in our case.
期刊介绍:
Scandinavian Actuarial Journal is a journal for actuarial sciences that deals, in theory and application, with mathematical methods for insurance and related matters.
The bounds of actuarial mathematics are determined by the area of application rather than by uniformity of methods and techniques. Therefore, a paper of interest to Scandinavian Actuarial Journal may have its theoretical basis in probability theory, statistics, operations research, numerical analysis, computer science, demography, mathematical economics, or any other area of applied mathematics; the main criterion is that the paper should be of specific relevance to actuarial applications.