IF 3.8 2区 数学 Q1 MATHEMATICS
M. Bukač, C. Trenchea
{"title":"Boundary update via resolvent for fluid–structure interaction","authors":"M. Bukač, C. Trenchea","doi":"10.1515/jnma-2019-0081","DOIUrl":null,"url":null,"abstract":"Abstract We propose a BOundary Update using Resolvent (BOUR) partitioned method, second-order accurate in time, unconditionally stable, for the interaction between a viscous incompressible fluid and a thin structure. The method is algorithmically similar to the sequential Backward Euler — Forward Euler implementation of the midpoint quadrature rule. (i) The structure and fluid sub-problems are first solved using a Backward Euler scheme, (ii) the velocities of fluid and structure are updated on the boundary via a second-order consistent resolvent operator, and then (iii) the structure and fluid sub-problems are solved again, using a Forward Euler scheme. The stability analysis based on energy estimates shows that the scheme is unconditionally stable. Error analysis of the semi-discrete problem yields second-order convergence in time. The two numerical examples confirm theoretical convergence analysis results and show an excellent agreement between the proposed partitioned scheme and the monolithic scheme.","PeriodicalId":50109,"journal":{"name":"Journal of Numerical Mathematics","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2020-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Numerical Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/jnma-2019-0081","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 5

摘要

摘要针对粘性不可压缩流体与薄结构之间的相互作用,提出了一种时间上二阶精确、无条件稳定的求解边界更新方法。该方法在算法上类似于中点正交规则的顺序后向欧拉-前向欧拉实现。(i)首先使用后向欧拉格式求解结构和流体子问题,(ii)通过二阶一致解算符在边界上更新流体和结构的速度,然后(iii)使用正向欧拉格式再次求解结构和流体子问题。基于能量估计的稳定性分析表明,该方案是无条件稳定的。半离散问题的误差分析在时间上是二阶收敛的。两个数值算例验证了理论收敛分析的结果,表明所提出的分区方案与整体方案具有较好的一致性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Boundary update via resolvent for fluid–structure interaction
Abstract We propose a BOundary Update using Resolvent (BOUR) partitioned method, second-order accurate in time, unconditionally stable, for the interaction between a viscous incompressible fluid and a thin structure. The method is algorithmically similar to the sequential Backward Euler — Forward Euler implementation of the midpoint quadrature rule. (i) The structure and fluid sub-problems are first solved using a Backward Euler scheme, (ii) the velocities of fluid and structure are updated on the boundary via a second-order consistent resolvent operator, and then (iii) the structure and fluid sub-problems are solved again, using a Forward Euler scheme. The stability analysis based on energy estimates shows that the scheme is unconditionally stable. Error analysis of the semi-discrete problem yields second-order convergence in time. The two numerical examples confirm theoretical convergence analysis results and show an excellent agreement between the proposed partitioned scheme and the monolithic scheme.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.90
自引率
3.30%
发文量
17
审稿时长
>12 weeks
期刊介绍: The Journal of Numerical Mathematics (formerly East-West Journal of Numerical Mathematics) contains high-quality papers featuring contemporary research in all areas of Numerical Mathematics. This includes the development, analysis, and implementation of new and innovative methods in Numerical Linear Algebra, Numerical Analysis, Optimal Control/Optimization, and Scientific Computing. The journal will also publish applications-oriented papers with significant mathematical content in computational fluid dynamics and other areas of computational engineering, finance, and life sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信