{"title":"关于度量旅行商问题的3/2逼近算法的历史注释","authors":"René van Bevern , Viktoriia A. Slugina","doi":"10.1016/j.hm.2020.04.003","DOIUrl":null,"url":null,"abstract":"<div><p>One of the most fundamental results in combinatorial optimization is the polynomial-time 3/2-approximation algorithm for the metric traveling salesman problem. It was presented by Christofides in 1976 and is well known as “the Christofides algorithm”. Recently, some authors started calling it “Christofides-Serdyukov algorithm”, pointing out that it was published independently in the USSR in 1978. We provide some historic background on Serdyukov's findings and a translation of his article from Russian into English.</p></div>","PeriodicalId":51061,"journal":{"name":"Historia Mathematica","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.hm.2020.04.003","citationCount":"30","resultStr":"{\"title\":\"A historical note on the 3/2-approximation algorithm for the metric traveling salesman problem\",\"authors\":\"René van Bevern , Viktoriia A. Slugina\",\"doi\":\"10.1016/j.hm.2020.04.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>One of the most fundamental results in combinatorial optimization is the polynomial-time 3/2-approximation algorithm for the metric traveling salesman problem. It was presented by Christofides in 1976 and is well known as “the Christofides algorithm”. Recently, some authors started calling it “Christofides-Serdyukov algorithm”, pointing out that it was published independently in the USSR in 1978. We provide some historic background on Serdyukov's findings and a translation of his article from Russian into English.</p></div>\",\"PeriodicalId\":51061,\"journal\":{\"name\":\"Historia Mathematica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2020-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.hm.2020.04.003\",\"citationCount\":\"30\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Historia Mathematica\",\"FirstCategoryId\":\"98\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0315086020300240\",\"RegionNum\":3,\"RegionCategory\":\"哲学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"HISTORY & PHILOSOPHY OF SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Historia Mathematica","FirstCategoryId":"98","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0315086020300240","RegionNum":3,"RegionCategory":"哲学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"HISTORY & PHILOSOPHY OF SCIENCE","Score":null,"Total":0}
A historical note on the 3/2-approximation algorithm for the metric traveling salesman problem
One of the most fundamental results in combinatorial optimization is the polynomial-time 3/2-approximation algorithm for the metric traveling salesman problem. It was presented by Christofides in 1976 and is well known as “the Christofides algorithm”. Recently, some authors started calling it “Christofides-Serdyukov algorithm”, pointing out that it was published independently in the USSR in 1978. We provide some historic background on Serdyukov's findings and a translation of his article from Russian into English.
期刊介绍:
Historia Mathematica publishes historical scholarship on mathematics and its development in all cultures and time periods. In particular, the journal encourages informed studies on mathematicians and their work in historical context, on the histories of institutions and organizations supportive of the mathematical endeavor, on historiographical topics in the history of mathematics, and on the interrelations between mathematical ideas, science, and the broader culture.