基于学习的编码目标检测,用于迭代正校正图像的精确鱼眼校准

Haonan Dong, Jian Yao, Ye Gong, Li Li, Shaosheng Cao, Yuxuan Li
{"title":"基于学习的编码目标检测,用于迭代正校正图像的精确鱼眼校准","authors":"Haonan Dong, Jian Yao, Ye Gong, Li Li, Shaosheng Cao, Yuxuan Li","doi":"10.1111/phor.12453","DOIUrl":null,"url":null,"abstract":"Fisheye camera calibration is an essential task in photogrammetry. However, previous calibration patterns and the robustness of the adjoint processing methods are limited due to the fisheye distortion and various lighting. This problem leads to additional manual intervention in the data collection. Moreover, it is arduous to accurately detect the board target under fisheye's distortion. To increase the robustness in this task, we present a novel encoded board “Meta‐Board” and a learning‐based target detection method. Additionally, an automatic image orthorectification is integrated to alleviate the distortion effect on the target iteratively until convergence. A low‐cost control field with the proposed boards is built for the experiment. Results on both virtual and real camera lenses and multi‐camera rigs show that our method can be robustly used in calibrating the fisheye camera and reaches state‐of‐the‐art accuracy.","PeriodicalId":22881,"journal":{"name":"The Photogrammetric Record","volume":"156 1","pages":"297 - 319"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Learning‐based encoded target detection on iteratively orthorectified images for accurate fisheye calibration\",\"authors\":\"Haonan Dong, Jian Yao, Ye Gong, Li Li, Shaosheng Cao, Yuxuan Li\",\"doi\":\"10.1111/phor.12453\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fisheye camera calibration is an essential task in photogrammetry. However, previous calibration patterns and the robustness of the adjoint processing methods are limited due to the fisheye distortion and various lighting. This problem leads to additional manual intervention in the data collection. Moreover, it is arduous to accurately detect the board target under fisheye's distortion. To increase the robustness in this task, we present a novel encoded board “Meta‐Board” and a learning‐based target detection method. Additionally, an automatic image orthorectification is integrated to alleviate the distortion effect on the target iteratively until convergence. A low‐cost control field with the proposed boards is built for the experiment. Results on both virtual and real camera lenses and multi‐camera rigs show that our method can be robustly used in calibrating the fisheye camera and reaches state‐of‐the‐art accuracy.\",\"PeriodicalId\":22881,\"journal\":{\"name\":\"The Photogrammetric Record\",\"volume\":\"156 1\",\"pages\":\"297 - 319\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Photogrammetric Record\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1111/phor.12453\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Photogrammetric Record","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1111/phor.12453","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

鱼眼相机标定是摄影测量中的一项重要工作。然而,以往的校正模式和伴随处理方法的鲁棒性受到鱼眼畸变和各种光照的限制。这个问题导致在数据收集中需要额外的人工干预。此外,在鱼眼畸变的情况下,精确检测板靶是一项艰巨的任务。为了提高该任务的鲁棒性,我们提出了一种新的编码板“Meta - board”和一种基于学习的目标检测方法。此外,还集成了一种自动图像正校正,迭代地减轻对目标的畸变影响,直至收敛。利用所提出的电路板建立了一个低成本的控制场。在虚拟和真实摄像机镜头以及多摄像机平台上的结果表明,我们的方法可以稳健地用于校准鱼眼摄像机,并达到了最先进的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Learning‐based encoded target detection on iteratively orthorectified images for accurate fisheye calibration

Learning‐based encoded target detection on iteratively orthorectified images for accurate fisheye calibration
Fisheye camera calibration is an essential task in photogrammetry. However, previous calibration patterns and the robustness of the adjoint processing methods are limited due to the fisheye distortion and various lighting. This problem leads to additional manual intervention in the data collection. Moreover, it is arduous to accurately detect the board target under fisheye's distortion. To increase the robustness in this task, we present a novel encoded board “Meta‐Board” and a learning‐based target detection method. Additionally, an automatic image orthorectification is integrated to alleviate the distortion effect on the target iteratively until convergence. A low‐cost control field with the proposed boards is built for the experiment. Results on both virtual and real camera lenses and multi‐camera rigs show that our method can be robustly used in calibrating the fisheye camera and reaches state‐of‐the‐art accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信