通过深度学习网络进行人机交互识别

S. J. Berlin, M. John
{"title":"通过深度学习网络进行人机交互识别","authors":"S. J. Berlin, M. John","doi":"10.1109/CCST.2016.7815695","DOIUrl":null,"url":null,"abstract":"This paper provides an efficient framework for recognizing human interactions based on deep learning based architecture. The Harris corner points and the histogram form the feature vector of the spatiotemporal volume. The feature vector extraction is restricted to the region of interaction. A stacked autoencoder configuration is embedded in the deep learning framework used for classification. The method is evaluated on the benchmark UT interaction dataset and average recognition rates as high as 95% and 88% are obtained on setl and set2 respectively.","PeriodicalId":6510,"journal":{"name":"2016 IEEE International Carnahan Conference on Security Technology (ICCST)","volume":"27 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"Human interaction recognition through deep learning network\",\"authors\":\"S. J. Berlin, M. John\",\"doi\":\"10.1109/CCST.2016.7815695\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper provides an efficient framework for recognizing human interactions based on deep learning based architecture. The Harris corner points and the histogram form the feature vector of the spatiotemporal volume. The feature vector extraction is restricted to the region of interaction. A stacked autoencoder configuration is embedded in the deep learning framework used for classification. The method is evaluated on the benchmark UT interaction dataset and average recognition rates as high as 95% and 88% are obtained on setl and set2 respectively.\",\"PeriodicalId\":6510,\"journal\":{\"name\":\"2016 IEEE International Carnahan Conference on Security Technology (ICCST)\",\"volume\":\"27 1\",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Carnahan Conference on Security Technology (ICCST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCST.2016.7815695\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Carnahan Conference on Security Technology (ICCST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCST.2016.7815695","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

摘要

本文提供了一种基于深度学习架构的高效人机交互识别框架。Harris角点和直方图构成了时空体的特征向量。特征向量的提取被限制在交互区域。堆叠的自动编码器配置嵌入到用于分类的深度学习框架中。在基准UT交互数据集上对该方法进行了评估,在setl和set2上的平均识别率分别高达95%和88%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Human interaction recognition through deep learning network
This paper provides an efficient framework for recognizing human interactions based on deep learning based architecture. The Harris corner points and the histogram form the feature vector of the spatiotemporal volume. The feature vector extraction is restricted to the region of interaction. A stacked autoencoder configuration is embedded in the deep learning framework used for classification. The method is evaluated on the benchmark UT interaction dataset and average recognition rates as high as 95% and 88% are obtained on setl and set2 respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信