使用集成深度学习迁移模型从历史文献中识别作者

Radmila Jankovic Babic, Alessia Amelio, I. Draganov
{"title":"使用集成深度学习迁移模型从历史文献中识别作者","authors":"Radmila Jankovic Babic, Alessia Amelio, I. Draganov","doi":"10.1109/INFOTEH53737.2022.9751301","DOIUrl":null,"url":null,"abstract":"Handwriting recognition is a challenging task and with the advancements in the development of the deep learning such task can be performed even for very limited documents. This paper aims to perform writer identification and retrieval from historical documents using an ensemble of convolutional neural network models that were built using the Inception-ResNet-v2 pre-trained architecture. The dataset comprises 170 images grouped in 34 classes. The results prove that the ensemble model outperforms single pre-trained models, obtaining an accuracy of 96%.","PeriodicalId":6839,"journal":{"name":"2022 21st International Symposium INFOTEH-JAHORINA (INFOTEH)","volume":"134 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Writer Identification From Historical Documents Using Ensemble Deep Learning Transfer Models\",\"authors\":\"Radmila Jankovic Babic, Alessia Amelio, I. Draganov\",\"doi\":\"10.1109/INFOTEH53737.2022.9751301\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Handwriting recognition is a challenging task and with the advancements in the development of the deep learning such task can be performed even for very limited documents. This paper aims to perform writer identification and retrieval from historical documents using an ensemble of convolutional neural network models that were built using the Inception-ResNet-v2 pre-trained architecture. The dataset comprises 170 images grouped in 34 classes. The results prove that the ensemble model outperforms single pre-trained models, obtaining an accuracy of 96%.\",\"PeriodicalId\":6839,\"journal\":{\"name\":\"2022 21st International Symposium INFOTEH-JAHORINA (INFOTEH)\",\"volume\":\"134 1\",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 21st International Symposium INFOTEH-JAHORINA (INFOTEH)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INFOTEH53737.2022.9751301\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 21st International Symposium INFOTEH-JAHORINA (INFOTEH)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INFOTEH53737.2022.9751301","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

手写识别是一项具有挑战性的任务,随着深度学习的发展,即使对于非常有限的文档,也可以执行这样的任务。本文旨在使用使用Inception-ResNet-v2预训练架构构建的卷积神经网络模型集合来执行作者识别和从历史文档中检索。该数据集包括170张图像,分为34类。结果表明,集成模型优于单个预训练模型,准确率达到96%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Writer Identification From Historical Documents Using Ensemble Deep Learning Transfer Models
Handwriting recognition is a challenging task and with the advancements in the development of the deep learning such task can be performed even for very limited documents. This paper aims to perform writer identification and retrieval from historical documents using an ensemble of convolutional neural network models that were built using the Inception-ResNet-v2 pre-trained architecture. The dataset comprises 170 images grouped in 34 classes. The results prove that the ensemble model outperforms single pre-trained models, obtaining an accuracy of 96%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信