霍奇光谱能区分轨道和流形吗?第1部分

Pub Date : 2021-06-15 DOI:10.1307/mmj/20216126
Katie Gittins, Carolyn Gordon, Magda Khalile, I. M. Solis, Mary R. Sandoval, E. Stanhope
{"title":"霍奇光谱能区分轨道和流形吗?第1部分","authors":"Katie Gittins, Carolyn Gordon, Magda Khalile, I. M. Solis, Mary R. Sandoval, E. Stanhope","doi":"10.1307/mmj/20216126","DOIUrl":null,"url":null,"abstract":"We examine the relationship between the singular set of a compact Riemannian orbifold and the spectrum of the Hodge Laplacian on $p$-forms by computing the heat invariants associated to the $p$-spectrum. We show that the heat invariants of the $0$-spectrum together with those of the $1$-spectrum for the corresponding Hodge Laplacians are sufficient to distinguish orbifolds with singularities from manifolds as long as the singular sets have codimension $\\le 3.$ This is enough to distinguish orbifolds from manifolds for dimension $\\le 3.$","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Do the Hodge Spectra Distinguish Orbifolds from Manifolds? Part 1\",\"authors\":\"Katie Gittins, Carolyn Gordon, Magda Khalile, I. M. Solis, Mary R. Sandoval, E. Stanhope\",\"doi\":\"10.1307/mmj/20216126\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We examine the relationship between the singular set of a compact Riemannian orbifold and the spectrum of the Hodge Laplacian on $p$-forms by computing the heat invariants associated to the $p$-spectrum. We show that the heat invariants of the $0$-spectrum together with those of the $1$-spectrum for the corresponding Hodge Laplacians are sufficient to distinguish orbifolds with singularities from manifolds as long as the singular sets have codimension $\\\\le 3.$ This is enough to distinguish orbifolds from manifolds for dimension $\\\\le 3.$\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1307/mmj/20216126\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1307/mmj/20216126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

通过计算与$p$-谱相关的热不变量,研究了$p$-型上紧黎曼轨道的奇异集与$p$-型上的霍奇拉普拉斯谱之间的关系。我们证明了对应的Hodge Laplacians的$0$谱的热不变量和$1$谱的热不变量足以区分具有奇点的轨道和流形,只要奇异集具有余维数$\le 3。这足以区分维度的轨道形和流形
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Do the Hodge Spectra Distinguish Orbifolds from Manifolds? Part 1
We examine the relationship between the singular set of a compact Riemannian orbifold and the spectrum of the Hodge Laplacian on $p$-forms by computing the heat invariants associated to the $p$-spectrum. We show that the heat invariants of the $0$-spectrum together with those of the $1$-spectrum for the corresponding Hodge Laplacians are sufficient to distinguish orbifolds with singularities from manifolds as long as the singular sets have codimension $\le 3.$ This is enough to distinguish orbifolds from manifolds for dimension $\le 3.$
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信