{"title":"高温下混凝土-水泥混凝土组合梁的抗弯强度","authors":"A. Maryoto, H. A. Lie, H. Jonkers","doi":"10.12989/CAC.2021.27.1.013","DOIUrl":null,"url":null,"abstract":"In this paper, the elevated temperature on a concrete-galvalume composite beam's flexural strength based on the numerical and experimental methods is investigated. The strategy is to perform modeling and simulation of the flexural test based on finite element method (FEM) at room temperature and validate its results by using experiments at the same temperature. With material constants and boundary conditions set-up provided from the validation, we model and simulate the same flexural tests for the composite at higher temperatures. The study concludes that the flexural strength of the beam decreases at higher temperature. Additionally, it was shown that cracking moments is very sensitive to the temperature fluctuation and the failure modes are sensitive with respect to the elevated temperature.","PeriodicalId":50625,"journal":{"name":"Computers and Concrete","volume":"72 1","pages":"13-20"},"PeriodicalIF":2.9000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Flexural strength of concrete-galvalume composite beam under elevated temperatures\",\"authors\":\"A. Maryoto, H. A. Lie, H. Jonkers\",\"doi\":\"10.12989/CAC.2021.27.1.013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the elevated temperature on a concrete-galvalume composite beam's flexural strength based on the numerical and experimental methods is investigated. The strategy is to perform modeling and simulation of the flexural test based on finite element method (FEM) at room temperature and validate its results by using experiments at the same temperature. With material constants and boundary conditions set-up provided from the validation, we model and simulate the same flexural tests for the composite at higher temperatures. The study concludes that the flexural strength of the beam decreases at higher temperature. Additionally, it was shown that cracking moments is very sensitive to the temperature fluctuation and the failure modes are sensitive with respect to the elevated temperature.\",\"PeriodicalId\":50625,\"journal\":{\"name\":\"Computers and Concrete\",\"volume\":\"72 1\",\"pages\":\"13-20\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers and Concrete\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.12989/CAC.2021.27.1.013\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers and Concrete","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.12989/CAC.2021.27.1.013","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Flexural strength of concrete-galvalume composite beam under elevated temperatures
In this paper, the elevated temperature on a concrete-galvalume composite beam's flexural strength based on the numerical and experimental methods is investigated. The strategy is to perform modeling and simulation of the flexural test based on finite element method (FEM) at room temperature and validate its results by using experiments at the same temperature. With material constants and boundary conditions set-up provided from the validation, we model and simulate the same flexural tests for the composite at higher temperatures. The study concludes that the flexural strength of the beam decreases at higher temperature. Additionally, it was shown that cracking moments is very sensitive to the temperature fluctuation and the failure modes are sensitive with respect to the elevated temperature.
期刊介绍:
Computers and Concrete is An International Journal that focuses on the computer applications in be considered suitable for publication in the journal.
The journal covers the topics related to computational mechanics of concrete and modeling of concrete structures including
plasticity
fracture mechanics
creep
thermo-mechanics
dynamic effects
reliability and safety concepts
automated design procedures
stochastic mechanics
performance under extreme conditions.